h“p
{

NASA Technical Memorandum 101668

SOFTWARE VERIFICATION PLAN FOR GCS

LESLIE A. DENT
ANITA M. SHAGNEA
KELLY J. HAYHURST

JANUARY 1990

NASA

National Aeronautics and
Space Administration

Langley Research Center
__Hampton, Virginia 23665-5225
(NASA-TM-101668) SNFTWARF VERIFICATION PLAN N?0-13057
FOR GCS (NA3A) 112 p CSCL 098

Unclas
G3/38 02615671

o |

Preface

The Software Verification Plan for GCS is document # 11 in a series of
fifteen documents which fulfill the Radio Technical Commission for Aero-
nautics RTCA/DO-178A guidelines, “Software Considerations in Airborne
Systems and Equipment Certification [1].” The documents are numbered
as specified in the DO-178A guidelines. The documents in the series are
used to demonstrate compliance with the DO-178A guidelines by describing
the application of the procedures and techniques used during the develop-
ment of flight software. These docurnents were prepared under contract
with NASA-Langley Research Center as a part of their long term research
program addressing the fundamentals of the software failure process.

This project consists of two complementary goals: first, to develop soft-
ware for use by the Research Triangle Institute (RTI) in the software error
studies research program sponsored by NASA-Langley Research Center [2];
second, to use and assess the RTCA/DQ-178A guidelines for the Federal
Aviation Administration (FAA). The two goals are complementary in that
the use of the structured DO-178A guidelines in the development of the
software will ensure that the test specimens of software have been devel-
oped according to the industry standards for flight critical software. The
error studies research analyses will then be conducted using high quality
software specimens.

The implementations will be subjected to two different software test-
ing environments: verification of each implementation according to the
RTCA/DO-178A guidelines and replicated random testing in a configura-
tion which runs more than one test specimen at a time. The term im-
plementations refers to bodies of code written by different programmers,
while a version is a piece of code at a particular state (i.e., version 2.0 is
the result of code review). This research effort involves the gathering of
product and process data from every phase of software development for
later analysis. More information on the goals of the Guidance and Control
Software (GCS) project are available in the GCS Plan for Software Aspects
of Certification.

The series consists of the following documents:

—i-

- GCS Developmenl Speczﬁrat:on Document no. 2

- GCS Configuration Indez Document no. 1

GCS Design Descriptions One for each software unplementatxon.
Document no. 3

GCS Progmmmer s Mannal Document no. 4, mg:ludes Software De-

sign Standa.rds document no. TT

GCS Conﬁguratzon Manaqemcnt ﬁlan Document no. 5A
Software Qualaty Aasumnre Plan for G'C'S' Ijocument o. 5B

GCS Source Listing One for ea.ch software xmplementatlon Docu-
ment no. 6 LT 7

GCS Source Code One for each software lmplementatlon Document
no. 7 ' T e

ces Erecutable Ob]ect Code One for each software 1mplementat10n
Not available on hardcopy. Document no. 8

GCS Support/Development Systcm C'onﬁguratwn De.scnptzon Doc-
ument no. 9

GCS Accomplishment Summary Document no. 10

Software Vcnfcatwn Pfan for GUS ﬁocument no. 11

GC’S Dcvelopment Speczﬁcatwn Remew Descr:pt:on Document no.
11A Ce : - : S

GCS Simulator (GCS.SIM) System Description Document no. 13

GCS S:mulator (GCS-SIM) Certification Plan Document no. 13A
GCS Plan for Software Aspects of Certification Document no. 14

—ii-

Py

"

Contents

Preface
1 Introduction
2 Software Description
3 General Strategy
3.1 Participationof SQA oo o
3.2 Static Testing Techniques
3.3 Dynamic Testing Techniques
3.3.1 Black-box Testing Techniques
3.3.1.1 Equivalence Partitioning
3.3.1.2 Boundary-valueanalysis.
3313 Stress e
3314 FErrorGuessing................
3315 Random
3.3.2 White-box Testing Techniques
34 ModuleTestingo
3.5 StoppingRules
36 TestCaseDesigno
3.6.1 GCS Black-box Test Case Design
3.6.2 GCS White-box Test Case Design
3.7 Verification Technique Summary
4 Tools
4.1 GCS Requirements Traceability Matrix
42 Checklists e
4.3 GCS Problem Report Form
44 DEC Code Management System
45 GCSModuleTestLog
4.6 Analysis of Complexity Tool
4.7 Coverage Information Tool
48 DEC/Test Managerccvovo...
49 GCSSIM i e .

-iii-

w

O~ -1 o ov W

—iy—

5 Development Phases 25
51 Design Phase 27
51.1 Overview v o v i v e e e 27 i
5.1.2 Design Review Description I 31
52 Code Phase . . . oo v v v vt i 37 ’
5.2.1 Overviewo 37
5.2.2 Code Review Description L4
53 ModuleTestingo oo 45
5.3.1 Overview Ce e e 45 , o
5.3.2 Module Testing Description 49 ;
54 Sub-Frame Testing e 53 .
54.1 White-Box Testing . . . o o v oo oo v ... 55 S
54.1.1 . Overview 55 o
5.4.1.2 White-Box Sub-Frame Testing Description 59 -
5.4.2 Black-Box Testing 63 ‘
54.2.1 Overview . T X
5.4.2.2 Black-Box Sub-Frame Testing Description . 67 .
5.4.3 Regression Testing e e e e 71
55 FrameTesting. « v v v v v v v v 13. i
551 Overview P & -
5.5.2 Frame Testing Description. 7 ' o
56 System Testing v v v 81 -
5.6.1 Overview e 81 i
5.6.2 System Testing Description e 85 |]
6 Summary 89 ;
A Equivalence Partitioning and Boundary-Value Analysis Ex- :
ample for GCS)
Al Introduction. . « « v v v v vt .. 01 ‘
A2 Input Equivalence Classes 91
A3 BoundariesforInput 92 R
A.4 Pseudo-Boundary Conditions P & Pl
A5 Equivalence Classes for Qutput 04 .
A6 TestCases. B ... 95 S
| =
|z
|

B GCS Forms 97

B.1 GCS Requirements Traceability Matrix 97
B.2 GCS Problem Report Form 101
B.3 GCS Design Review Checklist 105
B.4 GCS Code Review Checklist, 109
B5 GCSModule Test Log, 115
C McCabe’s Structured Test Technique 119
C.1 Imtroduction o v v i i 119
C.2 Procedures v v v v v v v e e e 119

-y—-

List of Figures

" 1 Overview of Development Phases and Reviews 2
2 Equivalence Class Hierarchy 8
N 3 Design Review Procedure 29
4 Code Review Procedure 39
5 Module Testing Procedure 47

6 Relationship between White-Box and Black-Box Sub-Frame
Testing . . .« v . o 54
7 White-Box Sub-Frame Testing Procedure 57
8 Black-Box Sub-Frame Testing Procedure 65
9 Frame Testing Procedure 75
10 System Testing Procedure 83
11 White-Box Sub-Frame Test Case Creation 121

-vii-

NG PAGE BLANK NOT FiLMED

PRECED! PAGE y | INTENTIONALLY BLAMX

e

-4
il

U
»
|

List of Tables

PRECEDING PAGE BLANK NOT FILMED

i 1 GuidancePhases o 4
2 Black-box and White-box Testing by Testing Phase. 6
: 3 Dynamic Testing Summary 15

-ix-

PAGE Vi [
e INTENTIONAN 3 BLANK

1 Introduction

According to the Radio Technical Commission for Aeronautics RTCA/DO-
178A guidelines, “Software Considerations in Airborne Systems and Equip-
ment Certification”[1], the software verification plan is written to provide
instruction to the testers and to explain the verification which will be per-
formed at each stage of the development cycle. The plan should include
descriptions of the testing methods to be used and their purposes, dis-
cussion of tools used, descriptions of the actual tests, and testing results.
Since this release of the plan precedes the actual testing of the software,
no test cases or results are presented; they will be added in a later release.
This plan is organized by the development phases since each phase has
an associated verification activity. The details of the strategy and general
procedures for each phase of the verification are described. See Figure 1
for an overview of the development phases and reviews. The schedule for
verification activities can be found in the GCS Plan for Software Aspects
of Certification.

A brief description of the software is provided to facilitate understand-
ing of the various phases of the verification process. Following the software
description, an overview of the general verification procedures and a de-
scription of the tools used during the verification process are given. Next,
a detailed description of each phase of verification is presented. The phases
which are addressed here are Design, Code, Module Testing, Sub-Frame
Testing, Frame Testing, and System Testing. Module Testing and Sub-
Frame testing are equivalent to “Module Testing” in the DO-178A guide-
lines. Frame Testing is equivalent to “Module Integration Testing” in the
DO-178A guidelines. System Testing is equivalent to “System Validation
Testing” in the DO-178A guidelines. The DO-178A guidelines “HW/SW
Integration Testing” are not necessary since no specific target hardware
is presently associated with GCS. Since the GCS Development Specifica-
tion existed prior to the incorporation of the DO-178A guidelines into the
experiment, the verification plan does not address verifying either the soft-
ware or system requirements. The GCS Development Specification Review
Description addresses the verification of the software and system require-
ments. As with other DO-178A documents, an attempt has been made to
reduce redundancy by referring to other documents when appropriate.

SM3149)] pue saseyJ yuewdoaAs(] JO MalAIaA()] 2aB1 g

LX) BITATY t
MIAY
ssaurpeay ssaurpeay ssouTpeay
uonadwon uoneidwioy | [| uoneydwon uonwdwo))
L 131 W3], Enact®
h x ¥ # i
s, %3], 189 R adnary MANATY
urshg sureiy surell-qng mpon 2poD afirsaq
‘L#'9 L#9 L#'9 t# forreoymeds
apop apep ¥MpO apoD uSreg — no_.! >q
w2sdg parvaiau] IMPO JIVMIJOS
aremijog wsdg saMpopyy MTMOg areajjog
eIy wISauy wIBaa] apo) g

SMINANY
pererossy

8al}IAIDY
- WOIeIYLIap

811-0(Ut payeudisap s, #)
pes) pue padnpoid
mud&ﬁﬁUQQ <w~.~-OQ

8a1TAIDY
FLEY LI EY Y

2 Software Description

The Guidance and Control Software(GCS) implementations are being de-
veloped according to the Guidance and Control Software Development Spec-
ification. This software is to provide guidance and engine control for the
terminal descent phase of a planetary lander onto a surface and to trans-
mit sensory information about the vehicle and its descent, to a recording
device. The vehicle should descend along a predetermined velocity altitude
contour that was chosen to conserve fuel and to effect a safe' attitude and
velocity upon landing.

The GCS Development Specification calls for the software to be divided
into three separate processing parts called sub-frames. These sub-frames
perform the following functions: Sensor Processing, Guidance Processing,
and Engine Control Law Processing. The three sub-frames constitute a
frame, and the frame must execute in one time step. For the vehicle to
complete a trajectory from the start of descent to landing, a large number
of frames must be executed. A trajectory is considered successful if the
correct commands are given to the engines to bring the vehicle in alignment
with the velocity altitude contour. The velocity altitude contour is defined
before the trajectory is started and is designed to bring the vehicle down
in the safest and most fuel efficient manner. The starting conditions for
the vehicle are called run parameters and iriclude starting velocity, altitude,
attitude, and rotation rate of the vehicle.

For the purposes of this project, GCS will run in conjunction with a
simulator which is known as GCS_SIM. GCS accesses the run parameters
from regions of memory which are common with GCS_SIM. GCS_SIM pro-
vides sensor values of current acceleration, altitude, rotation rate, temper-
ature, touchdown position, and velocity. These readings are also stored in
the common regions of memory. All data which is passed between GCS
and GCS_SIM occurs during the execution of the rendezvous routine. The
rendezvous routine is called by GCS after every sub-frame. The GCS con-
trols three opposed pairs of roll engines, three axial thrust engines, and
a parachute release actuator during the terminal descent. The descent is

1 A safe landing is defined as one in which the lander touches down with velocity < 6.2
meters/second normal to the surface, velocity < 3.1 meters/second parallel to the surface,
and an angle between the x-axis of the vehicle and the gravity vector < some delta.

Table 1: Guidance rphz;ses

[PHASE | STATE EVENT NEXT FHASE | NEXT STATE
1 Chute attached “ATvude Tor turning 1 Chute altached
Engines off engines on |¢ sensed Engines on
Touch down not sensed Touch down not sensed
2 Chute attached Axial engines become hot K] Chute Released
Engines on and the chule is released Axial Engines Hot
Touch down not sensed Touch down not senged
3 Chute released Altitude Tor tuening 4 Chute Released
Axial Engines Hot engines off is sensed Engines off
Touch down nol sensed Touch down not sensed
3 Chute released Touch down is sensed End GCS Chute Released
Axial Engines Hot Engines off
Touch down not eensed Touch down sensed
4 CThute released “Touch down is sensed End GCF Chute Released
Engines off Engines off
Touch down not sensed Touch down sensed
divided into four phases as illustrated in Table 1.

The GCS Development Specification does not require any error handling.

Any error handling which is present in an individual implementation must
allow for GCS_SIM to override it. For more information on this subject see
the implementation notes in the GCS Development Specification.

~ Since the functions of GCS impact the safe landing of the planetary
landing vehicle, the software is classified by DO-178A standards as critical-

ity level 1 software.

bl

3 General Strategy

This software verification plan governs the formal review and testing of
three implementations of GCS currently being developed at RTI. The three
implementations are being developed independently of each other with no
communication about the project among the three programmers. All three
implementations will undergo the testing procedures described in this plan.
A unique tester is assigned to each implementation and is instructed not to
discuss the implementation with any of the other testers or programmers.
A review team, consisting of the programmer, the tester, a Software Quality
Assurance (SQA) representative, and a person familiar with the GCS De-
velopment Specifications (user/analyst) will attend all verification reviews
and testing reviews. The same SQA representative and user/analyst will
participate in the reviews for all three implementations. The GCS Plan for
Software Aspects of Certification gives more information about the interac-
tion of project personnel.

3.1 Participation of SQA

Participation of the SQA representative is an important aspect of the ver-
ification process. The purpose of the SQA function is to promote product
quality by ensuring that all development, verification, and configuration
management activities and products adhere to published policies, proce-
dures, and standards. The Software Quality Assurance Plan for GCS de-
scribes the SQA activities associated with the software verification. The
SQA representative works closely with the testers and ensures that they
follow the procedures which are outlined here. The SQA representative
determines when the programmer and/or tester are ready to advance to
the next development phase. The SQA Plan for GCS also gives a descrip-
_tion of the Test Completion/Readiness Reviews which are held between the
different phases of testing.

3.2 Static Testing Techniques

Both static and dynamic verification techniques will be used for testing the
implementations of GCS. Static analysis is “the process of evaluating a pro-

Table 2: Black-box and White-box Testing by Testing Phase

Testing Phase? | Black-box Testing White-box Testing
Sub-frame b e X

Frame X

System X

gram without executing the program.”[3] Dynamic analysis is “the process
of evaluating a program based on execution of the program.” (3] The static
verification techniques which will be utilized are the design walk-through
and the code walk-through. A walk-through is defined as “a review process
in which a designer or programmer leads one or more other members of

the development team through a segment of Jesxgn or code that he or she
has written, while the other members ask questions and make comments
about technique, style, and possible errors, vxolavtxﬁ oifﬁdﬁevelopment stan-
dards, and other problems.”[3] The walk- through is not meant to impose
the style of the rest of the development team on the product nor to provide
solutions to problems. Errors are identified during the walk-through and
are resolved by the programmer after the review. The walk-through is dis-
tinguished from the inspection by having the author present and from the
formal review by not having the customer present. For the purposes of this
verification plan, the design walk-through will be referred to as the design

review and the code walk-through as the code review.

3.3 Dynamlc Testing Techmques

The DO-178A guidelines call for two different types of testing: requirements-
based (black-box) and software structure-based (white-box). Both types of
testing will be used for GCS as illustrated in Table 2. The Art of Software
Testing, by Glenford Myers[4], has been relied on heavily in this plan for

descriptions of testing techniques.

IModule test cases are designed by the programmer and are discussed separately.

Wi

Ll

3.3.1 Black-box Testing Techniques

Black-box testing may also be called data-driven or input/output-driven
testing.[4, page 8] The tester designs test cases by looking at the GCS
Development Specification and considering only the input and output of the
given segment of code without regard to the internal content of the code.
The given segment of the code may be a module, a group of modules, or a
whole program depending on the level of testing which is being performed.
For GCS, black-box testing will be performed at the sub-frame, frame,
and system level. Since the GCS Development Specification will be used
in creating test cases, the testers will be able to develop sufficient test
cases to address all of the requirements contained in the GCS Development
Specification, thus achieving 100% requirements coverage.

There are systematic methods as well as ad-hoc methods for determining
the input for black-box test cases. Myers[4] uses the following classifica-
tions.

Systematic Methods Ad-hoc Methods

Equivalence Partitioning Error Guessing
Boundary-value Analysis Random
Stress

Cause-effect Graphing

The methods of boundary-value analysis, error guessing, and random
will be used along with stress testing which is a variation of boundary-
value analysis. A discussion of equivalence partitioning is included here
since boundary-value analysis utilizes equivalence classes.

3.3.1.1 Equivalence Partitioning The purpose of equivalence parti-
tioning is to develop a minimal set of test cases that invoke as many different
input conditions as possible. This is achieved by partitioning the input do-
main into equivalence classes (see Figure 2). The definition of equivalence
class implies that any one input value from the class is as likely to detect a
particular error as any other input value in that class. Therefore, a test case
using one member of the class, makes testing the other members unneces-
sary. To identify equivalence classes, the test case designer examines each
input to the program and divides it into multiple classes, depending on how

Program
input a s S
valid classes
1

n
invalid classes

1

input b

input n

Figure 2: Equivalence Class Hierarchy

the input is handled. Input values which would be treated the same way
belong in one class. Two types of equivalence classes can be used: valid
and invalid, where invalid classes consist of unexpected or invalid condi-
tions. Each input will probably have more than two equivalence classes.
There are no formal rules to follow when ldenhfymg equivalence classes
but the tester should err on the side of caution and identify more equiv-
alence classes when there is a question about /input values being treated
in the same manner. It should also be noted that equivalence classes for
testing are not as formal as those defined in mathematics because they can
overlap.[4, page 45]

After the equivalence classes for all inputs are identified, the test case
designer identifies the test cases by using the following procedure. For
each test case input, only one value is chosen. Therefore if an input has
multiple classes identified with it, there must be at least one test case for

each different class.

1. Write a test case to cover as many valid classes for dxﬂ'erent iinputs as

possxble = *:;; ;;

2 Repeat untxl a.ll va.hd cla.sses are covered

Y

3. Write a test case to cover one invalid class.
4. Repeat until all invalid classes are covered.

An example of the equivalence partitioning for a GCS process can be
found in Appendix A.

The strength of equivalence partitioning is that it yields a set of test
cases which avoids repetition and covers error conditions. Its weakness is
that it does not combine specific inputs which can often hide errors or take
advantage of boundary conditions.

3.3.1.2 Boundary-value analysis Boundary-value analysis utilizes the
high payoff boundary conditions which often detect more errors. To design
boundary-value test cases, the equivalence classes for input are identified
in the same manner as for equivalence partitioning. In addition, a set of
equivalence classes of the output is identified. The necessary input values
to achieve that class of output values are then recorded. The test case
designer is also required to create equivalence classes for pseudo boundary
conditions, i.e. conditions which may make a difference based on knowledge
of the appllcatlon. For GCS, an example of a pseudo boundary condition
is: the small size of the data element AR_.COUNTER causes an incorrectly
calculated altitude when both the altimeter radar frequency and the rela-
tive altitude are high. When the boundary-value test cases are designed,
the boundary values of the equivalence classes are selected to be in the
test cases. The example in Appendix A shows the equivalence classes for
one of the processes of GCS and includes the pseudo boundary conditions
plus equivalence classes for the output. Boundary-value analysis produces
high-yield[4] test cases. It requires practice and knowledge of the software
application. It does not have a method for combining inputs, except where
consideration of particular output values causes inputs to be combined. For
GCS, the method of error guessing will be used to help detect errors which
can be hidden by a combination of inputs.

3.3.1.3 Stress Stress condition test cases are usually meant to over-
load the system[5, page 108]. For GCS, sensor values are examples of stress
conditions. The stress test cases carry the notion of invalid equivalence

classes (from boundary-value analysis) farther By combining selected in-
valid inputs. Since error handling is not required by the GCS Development
Specification, stress testing may correctly cause the planetary lander to
crash.

3.3.1.4 Error Guessing Error guessing is an ad-hoc type of test case
design which utilizes the tester's experience and intuition to design test
cases. It requires a small amount of effort and yields a high-payoff. When
performing error guessing test case design, the tester constructs test cases
by selecting any set of inputs which might produce errors. Often the tester
is subconsciously using other methods of test case design such as boundary-
value analysis. Error guessing does require the skills of an experienced

tester.

3.3.1.5 Random Random testing uses randomly generated input for
test cases. Random testing has the potential for a high-payoff because
conditions which no one might have considered are generated; it can be
especially useful during system-level stress testing.[6, page 68] However,
random testing is not systematlc ‘there can be repetitiveness in the test
cases, making it a less efficient method for most levels of testing. GCS will
use random testing for system-level test cases. Some random test generation
schemes use a statistical basis for picking the input values for a test case.
For GCS, the randomly generated inputs w1ll be plcked based on the usage

dxstnbutlon across the inp fspace

3.3.2 White-box 'I‘est'ing Techniques

White-box testing can also be considered logic-driven testing[4, page 9]
because it requires the tester to examine the structure of the code while
designing and executing the test cases. White-box testing can be performed
at any level but is typically performed at the lowest level of testing so that
the amount of code being examined is ma.nageable For GCS, white-box

3'I‘he GCS mput space is described in Usagc e Distribution for the Guidance and Control
Software by B. Ed Withers, to be published.

-10-

A

4

An important aspect of white-box testing is determining what comprises
adequate code coverage. There are many different criteria for adequate code
coverage. The criteria range from simple statement coverage, where every
statement in the program is executed at least once, to complete path cov-
erage, where every possible combination of statements is executed. See (4,
pages 37-44] for an excellent description of the different criteria of adequate
coverage. The criteria used for GCS will be multiple-condition coverage,
which requires all combinations of input at each decision statement to be
exercised. A decision statement can be a single branch such as a simple
:f-then statement or a branch which has more than one possible condition,
such as a compound if-then, a nested if-then, or a switch statement. All en-
try points to the code are also required to be exercised. The development of
white-box test cases might be considered part of static testing since errors
can be discovered while formulating the test cases. For instance, it might

" be determined that part of the code is unreachable. Most errors, however,

will be discovered during the execution of the code; therefore, white-box
testing will be considered a dynamic testing technique for this project.

Since each implementation of code will be unique for GCS, the white-
box test cases will be specific for each implementation and constructed by
the individual testers.

3.4 Module Testing

The test cases for the module testing will be generated by the individual
programmers and thus will vary with each implementation of code. The
GCS Development Specification does not constrain the size of a software
module within the separate sub-frames, so the size of a module is deter-
mined by the programmer. The programmer conducts his own module
testing and is only responsible for conducting a minimum set of test cases
using any technique desired.

3.5 Stopping Rules

A stopping rule is a guideline which determines when a testing phase
is done. For dynamic test techniques, there are actually two stopping
rules. The first stopping rule determines when test case creation is fin-

-11-

ished. The second stopping rule determines when test case execution is
finished. Many test techniques have stopping rules built i in. For exam-
ple, multiple-condition coverage unphes a stopping rule by requiring 100%
multiple-condition coverage for test case creation and test case execution.
Other stopping rules are less obvious. The stopping rules for executing
black-box sub-frame and frame testing are that all test cases must execute
correctly. Executing correctly means the expected results are achieved.
Thus, the burden of thorough testing is focused on the test creation stop-
ping rule. For GCS, the test creation stopping rule decrees there should
be 100% requirements coverage. The stress condxtxon testmg for system
testing will also follow the test execution stoppmg; rule that all test cases

must execute correctly. The test creat:on _stopping rule decrees that fifty

stress test cases must be developed The _random te testmg part of system
testing will use an adapted form of a mean time ‘between failure (MTBF)
rule for test execution. Fifty consecutive random test cases must execute
correctly. If one test case fails, the fault is corrected and the count to fifty
is restarted while new test cases are executed. Module testing will use test

creation and test execution stopping rules that s:mply require at least three
test cases per module for a total of at least twenty test cases per sub-frame.,

3.6 Test Case Design
3.6.1 GCS Black-box Test Case Design

All black-box test cases will be designed by the three testers as a group
before sub-frame testing is started for any implementation. For ease of test
case design and efficiency, the black- ‘box test cases will be designed in the
reverse order from that in whlch they wﬂl be executed

Test Case Design Test Case Execution
system sub-frame
frame . frame

sub- frame system

The system test cases will be desxgned first because they consxst of trajec-

tories whose input is run pa.ra.meters The expected results for these test

cases will consist of a determination of whether the vehicle should be able

-12-

Ll

to land safely® with the given initial conditions and an expected point of
crossing the velocity altitude contour. The system test cases will be val-
idated using two prototype implementations which were developed as an
earlier part of the GCS project. The frame test cases will be derived by
using some of the intermediate results after the system test cases are exe-
cuted on the prototypes as input for the frame. The intermediate results
will also help to determine the output for the frame. In the same manner,
the sub-frame test cases will be derived.

GCS black-box test cases at the sub-frame and frame level will be
designed using a combination of the boundary-value analysis and error-
guessing methods. The testers will construct a chart of all the equivalence
classes for the input and output of each sub-frame and frame. No dis-
tinction will be made between invalid and valid equivalence classes, since
GCS_SIM prevents impossible conditions and error handling is not required.
Those classes will be combined to make test cases, utilizing the intermediate
results from the system testing, as described above. Full requirements cov-
erage will be achieved by a combination of determining pseudo boundary
conditions, determining expected results, and determining the necessary
input to achieve a specific output. The GCS Development Specification
is divided into different processes. The processes make up the sub-frame.
Each requirement is tied to a specific process, except those related to pro-
cess control, timing, and memory. If there is any doubt that all require-
ments are covered, additional test cases will be created by the testers. The
testers may also use error guessing at their discretion to create additional
test cases.

GCS black-box test cases at the system level will be divided between
stress condition test cases and randomly generated test cases. Some of the
randomly generated test cases may include stress conditions. All of the
input to these test cases will consist of run parameters and the expected
results will be as described above. Some intermediate results may also be
examined for stress cases. Those intermediate results will be described in
the individual test case.

4See footnote 1.

-13-

A DTM® benchmark file will be created for each test case. More
specific procedures for black- box test case desxgn wnll be added to a later

release of thls (ﬂ)cumenf.

1 3.6.2 GCS Whlte -box Test Case Desngn L

The GCS white-box test cases will be designed durmg the sub frame testmg
phase of the development cycle by the individual tester for each implemen-
tation. The general procedures for test case development are described in
the Sub-Frame Testing section of this document.

3.7 Veri;ﬁ(‘:'at'ioh"ﬁ‘ééﬁﬁﬁﬁéaS ummary

The static technique of a walk-through will be used for reviewing the design
and code. Table 3 shows a summary of the dynamxc test techniques whxch
will be used for venfymg each xmplementatxon of GCS

8Gee the Tools section for a description of the DEC/Test Manager(DTM).

-14~

"UTLI-91 915M S9SED 159} 9} ‘OPOd Y} 0} IpewW 3q 0} pPapadU saFUeyd Auwe] ‘sased 189)
[Te 10] PaAdIyde o1om SMSaI Pajdedxs 343 ey} SURSW A[3091I0)) 9JNIAX] SaSe)) 953, IV -

413091100 91N09XY sase)) 359], aArNOasuo)) 0g(q)

sese)) 189], Wopuey (g wWnuwruin(e) 193897, wopuey :xog-yrerg
£139391100) 9INd9X sesel) 159, 11v(q)
sese)) 3$9], ss913§ (G(e) 123537, ssal)§ :xog-yoelg weysg

A13931100) 93nd9XY sese)) 59T, 1IV(q)
9FeI940)) syuawaimbay %001(e) 133897, sisATeuy anfep -Arepunog :xog-jyoe[g aure1y

A13991100) 9Indaxy sose)) 19T, TV (q)
s8eia40)) syuswarmbay %,001() 12359, sIsA[eUy an[ep-Lrepunog :xog-jyoelq
£13091100) 3IMdax §IFEY) 183, [V
93e1340)) Juewate’§ %001(q)
a3e1240)) uortpuo)-s[dumN %001(®) 123s3], 98e1oa0)) uonipuo)-9dyyMmIN XOog-9IYA, durel]-qng

«A13991100) 9Indoxy sase)) 3189, NTv(q)
aurely-qng Iad sase)) 1s3], 0Z <

Jo Tejo3 ® 10j ampoy 1ad sase)) 3597, ¢ <(e) -Boxg 2210Y)) 5 Jowrurerdolj ampo
s[ny Suiddojg uorynodaxy 3sa1,(q) g
a[ny Buiddojg uwoijeaa) 3say(e) pawaojied snbluyoay, oseyd 1so,

£Lreurumg $unysa], otureud(q :¢ Iqe],

- — e e e e e LK. N e e e S e e e e e v Iy

-15-

-16-

4 'Tools

: Several tools will be used throughout the verification process. Some of

L these tools are software packages and some are paper forms which help en-

sure verification is performed in an organized and standard manner. The

‘ tools are presented in the order in which they will be used on the project.

; Where appropriate, validation of the tool is discussed. See the GCS Sup-
port/Development System Configuration Description for information about
the specific versions of the tools to be used.

4.1 GCS Requirements Traceability Matrix

A matrix will be used to demonstrate requirements traceability. The GCS
Requirements Traceability Matrix will provide verification continuity through
all phases of development. This matrix consists of a row for each require-
ment found in the GCS Development Specification and a column for each
development phase.® During the review associated with each phase of de-
velopment, the material under review will be checked through this matrix
to ensure that all requirements are accounted for. Violations will be marked
by inserting the appropriate GCS problem report number. A violation oc-
“curs when the requirement is not covered or is covered inadequately or
; incorrectly. Compliance will be marked by inserting the appropriate iden-
i tifier for the design section, code section, or test case. There will be one
copy of the matrix for each implementation of code; and that copy will
be used during the design review, all code reviews, and all test readiness
and completion reviews. If any requirements change, the matrix must be
E “changed to reflect them. Since the GCS Requirements Traceability Ma-
trix will be under configuration control as part of this verification plan,
any changes made to it will have to be approved as described in the GCS
Configuration Management Plan. A copy of the matrix can be found on
page 97 in Appendix B.

~ ®There is not a column in the matrix for Module Testing since those test cases are not
’ _ necessarily linked to requirements. The column for sub-frame testing only applies to the
black-box testing, since white-box test cases do not involve the requirements.

-17-

PRECEDING PAGE BLANK NOT FILMED paGE_| b ANTENTIONABLY BLANK

4.2 Checklists

Checklists are used as tools to help the design review and code review

process. The checkhsts contain questxons which were chosen to bring out
potential problems in the deSIgn or code bemg revxewed The first answer
column of the checkhst contains the desirable answer to the questlon If
the answer to the questlon lles m the secondﬁ column then the reviewers

‘must consider whether there is a problem in the design or code. As the
questions are just guidelines, an answer in the second column does not
necessarily signify that an error has occurred. Copxes of the GCS Design
Review Checklist and the GCS Code Review Checklist can be found on
pages 105 and 109 in Appendnx B

4.3 GCS Problem Report Form T
The GCSP;ol;femReport (PR) Form is the tool used for error data col-
lection. All errors detected during the development of an lmplementatlon

will be recorded on a PR form. A sample form is included on page 101
in Appendix B. All errors detected in the specification, the design, the

code, or any forma.l test case’ are tracked. Instructxons for filling out the
form can be found in Programmer Instruction #8 - Completing the GCS
Problem Report Form. (See the GCS Programmer’s Manual.) The SQA
Plan for GCS, and the GCS Configuration Management Plan also ‘address
the use of the GCS Problem Report Form.

44 DEC Code Management Systemﬁ .

” The Code Management System (CMS) by Dlg:ta.l Equnpment Corporatlon

(DEC) will be used to control the versions of the design and code for each
‘implementation. A new version of the design and code will be created af-
ter every verification milestone as well as when changes are made to it.

The configuration management procedure as described in the GCS Con-
figuration Management Plan calls for the programmer to submit the item

7'l"‘ormal test cases are those executed by the tester. The module fest cases whlch the
programmer writes and executes are not considered formal; therefore a change to those

test cases does not require 8 PR form to be filed. = = = oo

18-

el

——y

to be configured to the configuration manager or SQA representative. The
programmer must also check out a configured item before changes can be
made to it. During Module Testing, the programmer will have his own
CMS library and will be able to check code in and out himself.

4.5 GCS Module Test Log

The GCS Module Test Log will be used to keep track of the testing per-
formed during module testing. One log will be used for each module. The
inputs and outputs of the module will be recorded on the first page of the
log. The input and expected results of each test case will be recorded before
the testing is performed. After the test case has been executed, the actual
results will be recorded on the test log. The number of any GCS Problem
Report Forms filled out during module testing will also be recorded with
the appropriate test case. A copy of the test log can be found on page 115
in Appendix B. Programmer Instruction #9 - Using the GCS Module Test
Log, which is part of the GCS Programmer’s Manual, explains how to fill
out the test log.

4.6 Analysis of Complexity Tool

The McCabe & Associates’ Analysis of Complexity Tool (ACT) will be
used to help the testers construct white-box test cases. ACT will generate
an annotated control flow graph of each module of code and show the
code complexity V(G). The code complexity is equivalent to the minimum
number of paths necessary to achieve 100% multiple-condition coverage.
ACT will determine a set of minimum test paths by applying McCabe’s
method. See Appendix C for a discussion of code complexity and McCabe’s
method. ACT will produce a list of the decisions and the conditions which
should be satisfied to achieve each path. The tester still has to create
the test cases by determining the inputs necessary to achieve the desired
conditions.

The use of ACT cannot adversely affect the reliability of the code since
it does not interfere with the execution of the code. The only risk involved
in using ACT is that an error in ACT may prevent an accurate testing

-19-

coverage measurement, The specified coverage criteria is 100% multiple-
condition coverage. -

The GCS project has on file a statement for Tom McCabe & Associates
about the development and testing of ACT. In addition, the GCS testers
will do a sample test of ACT as part of a training session on performmg
white-box testing. ACT will be used on three modules from the simulator,
one of which has low complexity (less than 5), one of which has medium
complexity (between 5 and 15), and one of which has hlgh complex1ty

(greater than 15). Al dxﬁ'erent FORTRAN decision constructs]I ber rep-

method. If the complexxty ‘and test paths do not match the results gwen
by ACT, any errors will be reported to McCabe & Associates, and further
testing will be done. If the complexlty and test paths do match ACT wxll
be considered reliable for generating test paths)

Since ACT does not provide any coverage measurement duere-
cution, another ¢ coverage tool will be used to ensure that all of the identified
paths in the code were really traversed. The tester will check to make sure
that all appropriate statements, given the input and test path specified by
ACT, were executed. If the coverage measurement disagrees with what
ACT predicted, the tester will walk through the code, ‘executing it manu-
ally to determine 1f there is a problem with the code or with ACT. This
procedure wxll serve as a second va.lxdatlon check of ACT.

4. 7 Coverage Informatxon Tool o e

Y A coverage information tool will be identified before sub-frame | testmg be-

gins. It will be used to collect coverage information during all formal® test
execution. ... - I

4.8 DEC / Test Manager..

The DEC/Test Manager (DTM) will be used for orgamzahon and con-
figuration control of the test cases. DTM is a software development and

”mamtenance tooI that orgamzes software regressxon tests a.nd test esults.

8Formal test cases are executed by the ge:sg,eg.ff -

-20-

¢

DTM provides an efficient, automated way to run, review, and store tests.[7]
. Several different kinds of files are associated with DTM. Template files are
- user-specified command files that DTM invokes to start the test. Typically

they contain operating system commands which set up the test environ-

ment and a call to the test driver or the actual program being tested.

Results files contain the output after DTM has run the test. They are
| time stamped. Benchmark files are the standard files to which the re-
! sults files are compared. To run a test with DTM the following general
procedure is followed.

1. A test description is created by naming the test, specifying an
associated template file, and entering a comment to briefly explain
what the test does.

2. Several related test descriptions are combined into a test collec-
tion.

3. The test collection is run interactively or in batch mode.

|
]
: 4. The results files (one for each test description) are reviewed in
i

DTM.

5. When a satisfactory run of the test is completed, a benchmark file
is created for each test description from the corresponding results
file.

6. The next time a test is run, DTM automatically compares the current
results file for each test description to its benchmark file and
shows any differences. :

7. If a change needs to be made to a test, the old test collection must be
recreated after the change is made to the template file for the appro-
priate test description. The operator enters a comment describing
the reason for the change when recreating the test collection.

On this project, one benchmark file will be created for each test descrip-
tion, and the results files of all three implementations will be compared
to the same benchmark file. DTM will serve as the test log for all phases
of testing which are conducted by the testers. Validation of this tool is not

-21-

necessary because it 1sﬂ only a test management tool and does not affect the
outcome of the tests

Each implementation of software will be tested using the simulator, known
as GCS_SIM. A GCS lmplementatlon lnteracts s with GCS_SIM when it calls
the rendezvous routine after every sub-frame. The rendezvous routine’ pro-
vides synchronization to ensure that all data in the common regions of
memory is stable when accessed by a GCS unplementatxon by allowing
only one program to have access to the data at any given time. When
the rendezvous routine is called by a GCS implementation, it turns con-
trol over to GCS_SIM. When GCS_SIM is finished, the rendezvous routine
returns control to the GCS implementation. The rendezvous routine is
also called at the beginning of the trajectory to initialize the run param-
eters. GCS_SIM utilizes several data files. INITIAL_.CONSTANTS.DAT
provides the run pa.rameters which the testers will change for different test
cases. TABULAR_DATA.DAT provides variables in tabular form which
are needed by GCS_SIM but are not utilized by the GCS implementation.
USAGE_DISTRIBUTION.DAT is a file which contains information on the
input space distribution and will be used by the testers to help select the
random test cases for system testing. GCS_SIM itself displays little infor-
mation. It only displays frame numbers and error messages when variables
go out of range. All other information is written to GCS_.TRACK.DAT.

The operator can use the trajectory plotter program or the display pro-
gram to examine the data in GCS_TRACK.DAT. The trajectory plotter

takes pa:ameters for the starting frame number, the ending frame number,
the number of frames to skip, and the delay between frames. The plotter
program can run from start to finish or can use a stepping function so that
the operator signifies when she is ready to continue. The plotter program
shows the desirable velocity altitude contour and shows the descent of the
vehicle on the same graph The display program shows the position of the

and its validation can be found in the GE'S Stfpport/Dcpelopment System
Configuration Description. A series of test drivers will also be written

by the project management personnel to aid in testing at the sub-frame

-929-

B AT U P

and frame level. These test drivers will interact with the simulator. The
next releasc of this document will contain more information about the test

drivers.

923~

-24-

5 Development Phases

The sub-section for each development phase contains a brief prose descrip-
tion of the activities which occur during the phase, an overview flowchart
of the phase, and an itemized description of the verification activities con-
ducted during the phase. The itemized description of the phase is separated
into the following parts. '

o Purpose - A one sentence description of the main purpose of this
set of verification activities.

e Method — The name of the verification technique which is being
used.

e Test Creation Stopping Rule — The rule that determines when
enough test cases have been created.

e Test Execution Stopping Rule - The rule that determines when
the described verification activities end.

e Roles - Describes what activities the programmer, tester, user /analyst,
and SQA representative perform during the phase.

¢ Input - Lists the input to the procedures which are conducted during
this phase. As described earlier, many of the black-box test cases
are written before testing begins. Those black-box test cases are
considered input. White-box test cases and module test cases whose
development is eonsidered part of the procedures are not considered

input.

e Output - Lists the output from the procedures which are conducted
during the phase.

e Test Readiness Review — The Test Readiness Review is considered
part of the verification procedure but is listed separately because it
is conducted by the SQA representative. A brief description of the
checks conducted is included.

4

-25-

PRECEDING PAGE BLANK NOT FILMED PGEL Y INTENTIONAMLY BLANK

o Test Completion Review — The Test Completion Review is consid-
ered part of the verification procedure but is listed separately because
it is conducted by the SQA representatxve A br:ef descrlptlon of the
checks conducted is 1ncluded e

) General Procedures - An enumerated hstmg of the genera.l V(‘I‘lﬁ ,

cation procedures. 7 S

e Tools - Lists the tools used during the pha.se to help the verification
process.

~26-

5.1 Design Phase

51.1 Overview

During the design phase, the static analysis technique of a design walk-
through or review will be employed. The purposes of the Design Review
are to verify that the requirements have been correctly translated into the
design, no additional functionality has been added, the interfaces are fully
and correctly specified, and the design standards have been followed. Only
one Design Review will be held per implementation, instead of a sepa-
rate Preliminary Design Review and Critical Design Review. The size of
the project makes it feasible to conduct the entire Design Review in three
hours. To aid in the Design Review process, a GCS Design Review Check-
list has been defined.® A copy of the GCS Design Review Checklist can be
found on page 105 in Appendix B. The checklist together with the GCS
Requirements Traceability Matrix will guide the review.

There is a classification for design elements called derived requirements.
As interpreted by the FAA, a derived requirement is an element of a lower
order of decomposition that does not trace to the next higher level but is re-
quired for proper operation of the system. Derived requirements should be
justified because adding unnecessary functionality to a design contributes
to unreliability. When derived requirements are introduced they should
be noted so that they can be traced through the later stages of the de-
velopment cycle. The GCS Development Specification is very detailed and
already imposes many constraints on the designer, reducing the likelihood
that there will be any derived requirements. The constraints imposed are
caused by developing multiple implementations which must look identical
on the sub-frame level and by the well-defined interface with GCS_SIM. It
is the review team’s responsibility to determine if any derived requirements
exist. If the review team determines that there are derived requirements
then they should be added to GCS Requirements Traceability Matrix for

9The GCS Design Review Checklist was compiled using example checklists obtained
from the Software Product Assurance Group at Jet Propulsion Laboratory, The Art of
Sofiware Testing[d), and The Complete Guide to Software Testing[8]. The authors of
this verification plan chose items for the checklist based on their experiences at Research
Triangle Institute and elsewhere. To make the checklist items more useful, they were made
specific for this project.

-27-

that implementation and be tracked in the same manner as the other re-
quirements.

The attendees to the review are the programmer, tester, user/ analyst,
and SQA representative. While all attendees have different specialty ar-
eas, they will all participate in the review process and are encouraged to

comment outside thexr specnalty area. Fxgure 3 shows the De51g11 Revxew

GCS. | .

-28-

QCY Probiem

Wapery

Cocered

esiremesn

Corrortly

NO

Ropars

ves

B Prevtem

Repors

f—. Chachiles
Tom

Nets Bucoption

o8 Chobliay

GCE Piaktem

Ropers

BOX Fiabom

Repan

Figure 3: Design Review Procedure

-29-

fo Dedge

-30-

5.1.2 Design Review Description
¢ Purpose '

— Verify that the requirements have been correctly translated into
the design, no additional functionality has been added, the inter-
faces are fully and correctly specified, and the design standards

have been followed.
e Method
— Design Walk-through
e Test Creation Stopping Rule
_ NJA
o Test Execution Stopping Rule
— All GCS Design Review Checklist questions have been answered.

— All Requirements from the Traceability Matrix are accounted for
in the design and no extra functionality is present.

¢ Roles

— Programmer: Only the design is under review, not the program-
mer. The programmer is present to interpret the design and
answer any questions about it.

— Tester: The tester's responsibility is to ensure that the purpose
of the review is fulfilled. The tester also fills out any necessary
problem reports noting only the problem, not the solution.

— User/Analyst: The user/analyst is the specification expert and
answers any questions about the requirements which arise.

— SQA Representative: The SQA representative ensures that the
tester follows the procedures documented in this plan and acts as
moderator to determine the order of the review. The SQA rep-
resentative also is in charge of the GCS Design Review Checklist
and the GCS Requirements Traceability Matrix. Please see the
SQA Plan for GCS for any additional responsibilities.

-31-

PRECEDING PAGE BLANK NOT FILMED PAGE_J 0 INTENTIONANZ BLAMK

e Input

1. GCS Development Specification including Modifications

2. Programmer Instruction #5 - Use of Error Handlers (See GCS
Programmer’s Manual) —

3. Programmer Instruction #6 — Design Document Outline (See
GCS Programmer’s Manual.)

4. Programmer Instruction #7 — Design Standards (See GCS Pro-
grammer’s Manual.)

5. GCS Design - includes Programmer’s GCS Design Description
and teamwork!® Design Diagrams

6. GCS Design Review Checklist (See Appendix B page 105.)
7. GCS Requirements Traceability Matrix (See Appendix B page 97.)

e Output

1. Completed GCS Design Review Checklist

2. Partially Completed GCS Requirements Traceability Matrix

3. Completed GCS Problem Report Forms (See Appendix B page 101.)
4. GCS Design under Configuration Control |

o General Procedures

1. The programmer and tester decide when the design is ready for
review,

2. The tester arranges the date, time, and place for the review.

3. The programmer makes one copy of the design document and

teamwork design diagrams. The copy and original!! are circu-
lated to the review team 48 hours before the review.

10Teamuwork is a registered trademark of Cadre Technologies Inc. Teamwork is a com-
puter aided software engineering tool which allows the user to analyze or design a system
using data flow diagrams or structure charts, according to the Hatley[9] method. The
GCS Plan for Aspects of Sofiware Certification also describes the use of teamwork on this

project.
1 Each attendee does not receive his own copy, because the document will average about

50 pages.

-32-

10.

11.

The tester brings blank copies of problem report forms to the
review.

The SQA - representatnve brmgs a blank copy of the GCS Design
Review Checklist and a blank copy of the GCS Requirements
T\'aceabnhty Matrix.

The SQA representatwe declares the general order in which the
design will be checked. It is not necessary for the review to
strictly follow the specified order but the SQA representative
should act as moderator to keep the review flowing as efficiently
as possible.

The programmer starts the review by giving a brief overview of
the design.

The programmer leads the review team through the design by
explaining each teamwork design diagram..

All input for each process described in the GCS Development
Specification will be checked by comparing the input table list
to the input of the appropriated teamwork design element spec-
ification(s). All input to a process specification must appear as
input to the teamwork design element and in the body of the
design element specification. The type declaration of each in-
put will be checked against the data element description from
the GCS Development Specification. If unused global input is
shown, it will be written on a problem report form. All local
variables should be specified in lowercase

All output for each process described in the GCS Development
Specification will be checked by comparing the output table list
to the output of the appropriated teamwork design element spec-
ification(s). All output from a process specification must appear
as output from the teamwork design element and in the body of
the design element specification. The type declaration of each
output will be checked against the data element description from
the GCS Development Specification. If unmodified global output
is shown, it will be written on a problem report form.

The SQA representative completes the design column of the GCS

-33-

12.

13.

14.

15.

sign, if necessary.

Requirements Traceability Matrix by filling in the teamwork
requirement. All requirements must be accounted for in the de-
sign. If a requirement is not met, a problem report must be filled
out by the tester, with the problem report number recorded on
the GCS Requirements Traceability Matrix by the SQA repre-
sentative. The SQA representative also records derived require-
ments, if any, on the GCS Requirements Traceability Matrix.
Derived requirements should be justified. If there is extra func-
tionality which is not traceable to any requirement; a problem
report should be written.

The SQA representative circles the appropriate response to each
question on the GCS Design Review Checklist. If any checklist
guideline is not followed, a problem report must be filled out
by the tester, with the problem report number recorded on the
GCS Design Review Checklist by the SQA representative, or the
SQA representative must initial the guideline to show that the
violation was acceptable.

After the entire design has been traversed and the GCS Design
Review Checklist and GCS Requirements Traceability Matrix
have been completed, the SQA representative will determine if
a follow-up review is necessary. If one is necessary, the SQA
representative will inform the programmer of what changes need
to be made to the design for the follow-up review.

After the review(s) is finished, all problem reports must be com-
pleted. The programmer is responsible for completing those
problem reports whose problems originated in the design, af-
ter he has fixed the design. The user/analyst is responsible for
completing those problem reports whose problems originated in
the specification, after he has made the necessary specification
modifications and generated a problem report form for the de-

The SQA representative is responsible for ensuring that all prob-
lem reports are satisfactorily completed.

34—

16. After all design changes are made, the design will be placed
under configuration control.

¢ Tools
— GCS Requirements Traceability Matrix
— GCS Design Review Checklist
— GCS Problem Report Form
— DEC Code Management System (CMS)

-35—-

-36-

5.2 Code Phase

5.2.1 Overview

During the code phase, the static analysis technique of a code walkthrough
or review will be employed. The purposes of the Code Review are to verify
that the design, which includes the interface, hierarchy, and pseudo-code,
has been correctly implemented and the coding standards have been fol-
lowed. A series of code reviews will be held after all of the code has been
written and compiled without error.'? All code modules will be subjected
to this Code Review. In addition, any module which has more than 20
lines!® of executable code added or modified due to a single change any
time during the verification process will be reviewed. The programmer will
choose the modules to be reviewed at each gathering with the following
constraints:

e the review should last no more than two hours, and

¢ all modules for one sub-frame will be reviewed before the next sub-
frame is started.

To aid in the Code Review process, a GCS Code Review Checklist has
been defined.'® The checklist is specific to FORTRAN, the language in

12Gome development cycles might call for a Code Review to be held as soon as the
first module of code is ready so that the programmer would be able to apply what was
learned at the review to subsequent modules. Due to the experimental nature of this
project, it was decided that no Code Review should be held until all the code for that
implementation is written. One of the goals of the project, as discussed in the GCS Plan
for Software Aspects of Certification, is to compare repetitive run testing to the procedures
documented in this plan. Vergions of the code before and after the Code Review will be put
in the repetitive run harness. It was felt that the constraint to have all of the code written
before the first review was not an unreasonable one since the programmer is free to make
changes to previously reviewed code modules based on techniques learned in subsequent
Code Reviews.

13More than twenty lines of code"were chosen as the boundary, because 20 lines repre-
sents a screenful of text.

14The GCS Code Review checklist was compiled using example checklists obtained
from the Software Product Assurance Group at JPL, The Complete Guide to Software
Testing[8], The Art of Software Testing{4] and a previous RTI testing experiment. (See
Software Reliability Measurement/Test Integration Techniques: Instructions for Testers
prepared by RTI for SAIC and submitted to Rome Air Development Center. The authors

-37-

PRECEDING PAGE BLANK NOT FILMED MASE_3L INTENTIONABLY BLANK

which all three implementations at RTI will be coded. A copy of the GCS
Code Review Checklist can be found on page 109 in Appendix B. The
checklist together with the GCS Requirements Traceability Matrix will help
to guide the review. The design will be the main guiding force of the review.
It should be remembered that the pseudo-code of the design is merely a
way to express the intentions of the designer and the actual code does not
have to strictly adhere to the pseudo-code, it just needs to satisfy the same
purpose. However if the designer’s intentions change, the design must be
changed to match the actual code.

Attendees to the Code Review are the same as those for the design
review: the programmer, tester, user/analyst, and SQA representative.
While all attendees have different specialty areas, they will all participate
in the review process and are encouraged to comment outside their specialty
area. The specifics of the Code Review process are described following the
figure. Any additional SQA procedures are described in the SQA Plan for

GCS.

of this verification plan chose items for the checklist based on their experiences at Research
Triangle Institute and elsewhere. To make the checklist items more useful, they were made
specific for this project.

-38-

. [

Code Design

Faplein s

Nosd Code

Medeir

Cheed Coke
Agalna

Treseabibiuy

Matein

QS Vinklem

Repent

Chork Coadde

Againe Doilgs

Flemens

GACS Peaklem

Repont

Last Review, e e e
GCS Trabiem

Ars AN

Repeort

Nequliements

Arenunted [ay

Fronine

Thecblint

Hem

fe
ujdetine

Viotared

,

Nate Freoption

On Chechlinn

QA Mepnes

Fignre 4: Code Review Procedue

-3C-~

Tinptement
hanges In

Cnde undfae

Ne

40~

i
'

5.2.2 Code Review Description
e Purpose

— Verify that the design has been correctly implemented and the
coding standards have been followed.

o Method
— Code Walk-through

Test Creation Stopping Rule |
- N/A

o Test Execution Stopping Rule
- All elements of the design which are applicable to the portion of
the code being reviewed have been accounted for in the code.

— All applicable requirements from the GCS Requirements Trace-
ability Matrix have been accounted for in the code.

— All GCS Code Review Checklist questions have been answered.
Roles

— Programmer: Only the code is under review, not the program-
mer. The programmer is present to interpret the code and an-
swer any questions about it.

— Tester: The tester’s responsibility is to ensure that the purpose
of the review is fulfilled. The tester also fills out any necessary
problem reports noting only the problem, not the solution.

— User/Analyst: The user/analyst is the specification expert and
answers any questions about the requirements which arise.

— SQA Representative: The SQA representative ensures that the
tester follows the procedures documented in this plan and acts
as moderator to determine the order of the review. The SQA
representative also is in charge of the GCS Code Review Check-
list and the GCS Requirements Traceability Matrix. Please see
the SQA Plan for GCS for any additional responsibilities.

—41-

pace_40

By

INTENTIONAMY BLANK
PRECEDING PAGE BLARNK NOT FILMED

¢ Input

GCS Development Specification including Modifications

GCS Design - includes Programmer’s GCS Design Description
and teamwork Design Diagrams

Programmer Instruction #3 - Coding Standards for GCS Ap-
plications (See GCS Programmer’s Manual.)

Programmer Instruction #5 - Use of Error Handling (See GCS
Programmer’s Manual.)

Cleanly Compiled GCS Code Module(s)

6. GCS Code Review Checklist (See Appendix B page 109.)

GCS Requirements Traceability Matrix — the same one used for
the Design Review and previous Code Reviews (See Appendix B

page 97.)

~ & Qutput

1.

Completed GCS Code Review Checklist

2. Partially Completed GCS Requirements Traceability Matrix

3. Completed GCS Problem Report Forms (See Appendix B page 101.)

4. GCS Code Modules under Configuration Control

e General Procedures

1.

The programmer and tester decide when the code is ready for a
review.

Before the first Code Review, the programmer submits a copy
of all of the code to configuration control.

The tester arranges the date, time, and place for the review.

The programmer gives a copy of the selected modules to each
attendee at least 24 hours before the Code Review.

The tester brings blank copies of problem report forms to the
review.

-49-

B X T

10.

11.

The SQA representative brings a blank copy of the GCS Code
Review Checklist and the GCS Requirements Traceability Ma-
trix which was used for the Design Review and previous Code
Reviews.

The SQA representative declares the general order in which the
design will be checked. It is not necessary for the review to
strictly follow the specified order, but the SQA representative
should act as moderator to keep the review flowing as efficiently
as possible.

The programmer starts the review by giving an overview of each
of the code modules. The discussion should include the function
of the module, how it fits in the sub-frame, and its relationship
to the design.

The programmer leads the review team through the code by
reading it aloud, line by line. Review team members should
interrupt any time they have a question.

The SQA representative completes the appropriate code section
of the GCS Requirements Traceability Matrix by filling in the
name of the code module in which the requirement is satisfied.
At the last Code Review for each sub-frame, the SQA repre-
sentative must check to be sure that all requirements for that
sub-frame have been fulfilled. If a sub-frame requirement is not
met, a problem report form must be filled out by the tester with
the problem report number recorded on the GCS Requirements
Traceability Matrix by the SQA representative. If a sub-frame
requirement is met more than once, the reviewers should de-
termine if some functionality is being repeated and fill out a
problem report form, following the previous procedure, if the
duplicated functionality is inappropriate.

The SQA representative circles the appropriate response to each
question on the GCS Code Review Checklist. If any checklist
guideline is not followed, a problem report must be filled out
by the tester, with the problem report number recorded on the
GCS Code Review Checklist by the SQA representative, or the

—43-

SQA representative must initial the guideline to show that the
violation was acceptable.

12. After all of the code has been traversed and the GCS Code
Review Checklist!® and GCS Requirements Traceability Matrix
have been completed, the SQA representative will determine if a
follow-up review is necessary. If one is necessary, the SQA rep-
resentative will inform the programmer of what changes need to
be made to the code for the follow-up review.

13. After all of the Code Reviews are complete, the SQA represen-
tative will ensure that all necessary changes have been made.
The programmer is responsible for completing those problem
reports whose problems originated in the code after fixing the
code. If the problem originated in the design, the programmer
is responsible for completing the problem report after fixing the
design and then generating another problem report form for the
code. This second problem report is completed by the program-
mer after the necessary code changes have been made. The
user/analyst is responsible for completing those problem reports
whose problems originated in the specification after the neces-
sary specification modifications have been made, and then gen-
erating a problem report form for the design or code depending
on which one, if any, reflects the problem first.

14. The SQA representative is responsible for ensuring that all prob-
lem reports are satisfactorily completed.

15. After all code changes are made, the code will be placed under
configuration control.

e Tools

— GCS Requirements Traceability Matrix
— GCS Code Review Checklist
— GCS Problem Report Form
— DEC Code Management System (CMS)

15There is a separate GCS Code Review Checklist for each session.

—44-

5.3 Module Testing

5.3.1 Overview

Since the programmer is free to use any division of modules for the pro-
cessing which comprises a sub-frame, the programmer will be responsible
for module testing. The programmer is free to usc any testing method on
the code provided a minimum of twenty test cases are executed per sub-
frame, including three for each module.’® No Test Readiness Review is
held for Module Testing since there are no specific guidelines for creating
test cases. A Test Completion Review will be held after Module Testing is
complete. During the module testing, the programmer will have a personal
CMS library as described in the GCS Configuration Management Plan. The
programmer will not be required to obtain approval to make any necessary
changes to the code as long as the reason for the change is put in the com-
ment for the CMS library and a problem report form is completed. While
testing, the programmer will be required to keep a testing log, for each
module, which will include information about the test case and its results,
both expected and actual, and a cross reference number to any problem
reports which are generated. A copy of the GCS Module Test Log can be
found on page 115 in Appendix B. Detailed Instructions for completing
the test log can be found in Programmer Instruction #9 - Using the GCS
Module Test Log. (See the GCS Programmer’s Manual.) Figure 5 shows
the module testing procedure.

16With at least three test cases, the inputs can be at opposite boundaries. The twenty
case minimum was chosen in the event that there are few modules in the sub-frame. For
such cases, the individual modules would need more testing since they would perform more
functions.

—45~

|
o
A

Denign Record Teat

Teat Canrn

Casre in

PRECEDING PAGE BLANK NOT FILMED

™ -
Teat Cane in Test lng

Teat Fog

Construct
Teat Drivers

Frecnte Necard Reaults

"

aes

Frohlem

Repmt

f

Condict Teat

Completion

Review

Figure 5: Module Testing Procedure

PMGE L INTENTIONAMY BLANK

Tmplement
Code

Changen

—48-

5.3.2 Module Testing Description
e Purpose I

~ The programmer should be satisfied that the code correctly per-
v forms the functions specified in the design.

Method

— Programmer’s Choice

Test Creation Stopping Rule

— At least three test cases per module have been created for a total
of at least twenty test cases per sub-frame.

Test Execution Stopping Rule

— At least three test cases per module have been correctly executed
for a total of at least twenty test cases per sub-frame have been
correctly executed. - - '

Roles

— Programmer: Designs and executes tests for each module.
— Tester: Acts as an advisor to answer any questions about testing.

— User/Analyst: Makes any necessary modifications to the GCS
Development Specification. Provides a set of initial conditions
which are also known as run parameters.

— SQA Representative: Approves any changes which need to be
made to the programmer’s design and conducts the Test Com-

pletion Review.

e Input

1. GCS Development Specification including Modifications

2. GCS Design - includes Programmer’s GCS Design Description
and teamwork Design Diagrams

3. GCS Code Modules under Configuration Control

—49-

apei_Y T INTENTIONARLY BLARK

PRECEDING PAGE BLANK NOT FILMED

4. Programmer Instruction #3 - Coding Standards for GCS Ap-
plications (See GCS Programmer’s Manual.)

¢ Output

1. Completed GCS Module Test Logs (See Appendix B page 115.)
2. Completed GCS Problem Report Forms (See Appendix B page 101.)
3. GCS Code Modules under Configuration Control

o Test Readiness Review
— None
o Test Completion Review checks that

— All test cases are documented in the GCS Module Test Log along
with their expected and actual results.

— All discrepancies between actual and expected test results are
documented in a problem report.

— The expected results were calculated correctly'” and the calcu-
lations are included in the GCS Module Test Log.

— The problem report number i8 contained in the GCS Module
Test Log.

— All problems have been corrected and are appropriately marked
in the code as speciﬁed in Programmer Instructions #3 — Cod-
ing Standards for GCS Applications. (See GCS Programmer’s

Manual)

— Any changes to test cases (including the addition of new test
cases) are documented in the Notes section of the log.

— The programmer has executed a minimum of three test cases per
module and twenty test cases per sub-frame.

o General Procedures

17Dye to resource constraints at most ten test cases per module and at most a total of
forty per sub-frame will have their expected results checked.

-50-

10.

. The user/analyst provides the programmer with one set of run

parameters which the programmer can use during testing.

The programmer checks the code into the personal CMS library
after all of the Code Review changes have been made.

The programmer initiates a test log for each module by writing
down the test cases and expected results. '

The programmer constructs any necessary test drivers to exercise
the module in a stand-alone fashion. The programmer does not
have access to GCS_SIM or any of the test drivers which were
discussed in the tools section.

. The programmer executes the specified test cases and records

the actual results.

The programmer fills out a problem report form for each test case
whose actual results did not agree with the expected results. A
reference to the test case number from the log is cited.

The programmer makes any necessary changes to the code after
checking it out of the CMS library. The corrected code is checked
back into CMS by the programmer with a comment as to why
the change was made, and then the programmer completes the
problem report form.

If there was a problem with the test case, the programmer cor-
rects the test case, documenting the correction in the Notes sec-
tion of the log. A GCS Problem Report Form does not need to
be filled out by the programmer for a test case change.

If a problem is discovered which originated in the design, the
programmer must fill out a problem report form for the design
and get the approval of the SQA representative to make the
change to the design and then complete the problem report form.
The programmer can then fill out the necessary problem report
form for the code and follow step 7 for fixing the code.

The programmer must re-execute all test cases for a module
if any changes were made to the code of that module. If any
actual results do not agree with the expected results, the cycle

-51-

of recording and fixing problems is repeated. Problems which
were previously identified and not correctly fixed do not need a
new problem report form but additional information about the
test case run should be added to the existing problem report
form.

11. The Test Completion Review is held.
¢ Tools

— GCS Problem Report Form
— DEC Code Management System (CMS)
— GCS Module Test Log

-52-

5.4 Sub-Frame Testing

Sub-frame testing is the lowest level of testing which the testers will per-
form. Since the programmers are free to divide up the processing in a
sub-frame into any division of modules, the sub-frame is the lowest com-

'mon denominator between implementations. Both white-box and black-box

testing will be performed on the sub-frame level by the testers. The Test
Readiness Review before this phase will be held after the tester has devised
the white-box test cases. The black-box test cases will already be designed.
The white-box testing will be performed first. After white-box testing is
completed, the black-box testing will be performed on the same version
which the white-box testing was started on; i.e., without the corrections
which were made during white-box testing.!® The Test Completion Review
after this phase will result in one version of code. The fixes for all faults
discovered by both testing methods will be combined and put into the code.
See the SQA Plan for GCS for more detail about how this will be done.
Figure 6 shows how the black-box and white-box sub-frame testing relate
to each other. As the illustration shows, code version'® 3.0 is the input
for both white-box and black-box testing. After those sets of testing are
complete, the versions are combined to create version 4.0 of the code. Both
sets of test cases (white-box and black-box) will be re-run on the resulting
version of code as a regression test to ensure that all problems were fixed
and no new ones were introduced.

18This procedure will allow the effectiveness of white-box and black-box testing to be
compared. It also requires that the programmer not make additional changes when fixing
faults in the code.

19Gee the GCS Plan for Configuration Management for an explanation of version
numbers.

-53-

white-box test CN

code version 3.0

Test Readiness
Review

white-box
test cases

test cases

Mck-box test cases

black-box additional black-box

test cases

code version 3.0

code ‘ ‘
version .
Wax Decision Coverage
Sub-Frame
Testing

code version
W3.x

’ : code
T version
Functional By
Sub-Frame
Testing

Review (with

Test Com{;letion
Regression Testing)

1 code version 4.0

code version

B3.y

Figure 6: Relationship between White-Box and Black-Box Sub-Frame Test-

ing

54—

5.4.1 White-Box Testing

5.4.1.1 Overview The white-box test cases will be designed using Mc-
Cabe's method of decision analysis. Please see Appendix C for a discussion
of the method and the procedures which will be used to implement it on
this project. The tester may structure the test case inputs to execute the
test for the entire sub-frame or may structure the test cases to execute each
module individually.? If changes to the code during white-box testing cause
the structure to be altered, new white-box test cases will be constructed.
The test cases will be incorporated into a later release of this document
to comply with the DO-178A guidelines. Figure 7 shows the white-box
sub-frame testing procedure.

201t must be remembered that the sub-frame is the lowest common denominator be-
tween the implementations, so each tester is testing the same sub-frame but the individual
modules may be different. With a coverage technique, it makes sense for the tester to be
allowed to test each module individually.

-55-

R

-56-

White-box
Test Cases

L

Conduct Test
Readiness
Review

GCS
Problem Construct
Report Necessary
Test Cases
DTM:
Execute
Teat Cases
DTM:
> Review Results
File
Did oo
Test Case
Execute Problem lmz’:dmem
e
Correctly Report s

All Test Cases
Been Reviewed

Conduct
Test Completion
Review

=

Report

e ——

Figure 7: White-Box Sub-Frame Testing Procedure

~-57-

BAGE_ZL__ INTENTIONARLY BLANK

PRECEDING PAGE BLANK NOT FILMED

—-58-

5.4.1.2 White-Box Sub-Frame Testing Description
¢ Purpose

— Test the sub-frame code from a structural perspective in order
to check that every statement executes correctly.

Method

—~ White-Box: Multiple-Condition Coverage with McCabe’s Method
to determine test paths

Test Creation Stopping Rule

— Enough test cases have been created to achieve one hundred
percent multiple-condition coverage.

Test Execution Stopping Rule

— All test cases have been correctly executed.

Roles

— Programmer: Fixes any problems found after a complete test
run.

— Tester: Designs and executes test cases.

— User/Analyst: Assists tester in designing test cases by answering
questions about the GCS Development Specification and simula-
tor. Makes any necessary modifications to the GCS Development
Spectfication.

— SQA Representative: Approves any changes which need to be
made to the programmer’s design or code or the test cases and
conducts the Test Readiness and test Completion Reviews.

¢ Input

1. GCS Development Specification including Modifications

2. GCS Design - includes Programmer’s GCS Design Description
and teamwork Design Diagrams

-59-
PRECEDING PAGE BLANK NOT FLmED pece_S § INTENTIGHALLY BLANK

3. GCS Module Code under Configuration Control

4. Programmer Instructions #3 - Coding Standards for GCS Ap-
plications (See GCS Programmer’s Manual.)

¢ Output

1. Completed GCS Problem Report Forms (See Appendix B page 101.)
2. GCS Sub-Frame Code under Configuration Control

3. Coverage Analyzer Qutput (See Section refcovertool.)
4.

White-Box Test Cases and Results under Configuration Control
in DTM

¢ Test Readiness Review checks that
— All test cases are fully documented including all inputs and ex-
pected results.
— The test cases appear to achieve 100% multiple-condition cover-
age.

o Test Completion Review checks that

— The test results are documented.

— All discrepancies between actual and expected test results are
documented in a problem report.

~ All problems are corrected and are appropriately marked in the
code as specified in Programmer Instruction #3 - Coding Stan-
dards.-for GCS Applications. (See GCS Programmer’s Manual.)

— All test case errors are corrected and documented in a problem
report.

— All new test cases, necessitated by changes to the structure of
the code, are fully documented including all inputs and outputs.

— At least 100% statement coverage was achieved.

_— All problem report forms are completed and approved by SQA.

¢ General Procedures, repeated for each sub-frame

-60-

1. The tester uses the programmer’s code to determine the basis
path for each module using the McCabe methodology. The re-
maining paths are also determined. See Appendix C for the
procedures to find the paths.

2. The paths for the modules are combined to create sub-frame
paths at the tester’s discretion.

3. The tester uses the GCS Development Specification to determine
the input and expected output for each sub-frame test path.

4. A DTM benchmark file is created for each white-box test case.
5. The Test Readiness Review?! is held.

6. The tester executes all test cases in DTM using the test case
driver which interacts with GCS_SIM and the coverage tool. The
test case results files are compared to the existing benchmark
files for that test case. The test case driver only acts for the
sub-frame; if the tester wishes to stay on the module level, she
may need to do additional development on the driver.

7. A problem report is filled out for each test case whose actual
results did not agree with the expected results.

8. The programmer fixes all problems which were discovered and
completes the accompanying GCS Problem Report Form. If a
problem is traced back to the design, an additional GCS Problem
Report Form must be filled out for the design.

9. Changes which are not related to observed failures cannot be
made during sub-frame testing.

10. After all fixes are made, the programmer submits the new code
for configuration control. The SQA representative determines if
the code fixes are acceptable and re-enters the code into config-
uration control.

11. At the discretion of the SQA representative, significantly modi-
fied code should go through another Code Review as described

21 Actually one Test Readiness Review will be held for all sub-frame testing. All white-
box sub-frame test cases will be reviewed as well as all black-box sub-frame test cases.

-61-

in Section 5.2. If more than 20 lines of code have been added or
modified, due to a single change, the code must be re-reviewed.

 12. If the structure of the code has changed, new test cases must be
constructed.

13. When the tester gets the new copy of code, all test cases are
re-executed in DTM. If any actual results do not agree with the
expected results, the cycle of reporting and fixing problems is
repeated. Problems which were previously identified and not
fixed do not need a new problem report form, but additional
information about the test case run will be added to the existing
problem report form.

14. The Test Completion Review?? is held.

e Tools

— GCS Problem Report Form (See Appendix B page 101.)
— DEC Code Management System (CMS)

— McCabe Analysis of Complexity Tool (ACT)

— Coverage Information Tool (See Section 4.7.)

— DEC/Test Manager (DTM)

- GCS.SIM

— Sub-Frame Test Case Driver

22 Actually only one Test Completion Review is held for all sub-frame testing. Both
white-box and black-box testing results will be reviewed .

-62-

5.4.2 Black-Box Testing

5.4.2.1 Overview The sub-frame test cases based on the requirements
will be designed by the three testers as a team.?® Every requirement will
be covered by at least one test case. The test case will include the input
and expected results. The tests will be executed on each implementation
separately by the appropriate tester. Each implementation must correctly
execute all test cases. Coverage information will be gathered on each test
case. A version of code will be configured after all test cases run correctly.
If more than six serious or critical errors are found during the testing of
a single sub-frame, the tester has the option to write additional test cases
and execute them. The constraint is placed on the tester that the amount
of effort may not cause the schedule to slip. A copy of the schedule can be
found in the GCS Plan for Software Aspects of Certification. The test cases
will be incorporated into a later release of this document to comply with
the DO-178A guidelines. Figure 8 shows the black-box sub-frame testing
procedure.

23The system and frame test cases will have been designed first. It is easier for the
testers to start writing test cases at the highest level and then use existing prototypes of
GCS to help determine intermediate values (which are frame outputs) that would make
sense for sub-frame test cases.

—-63-

—-64—~

Black-Box
Sub-Frame
Test Cases

Conduct Test

Readiness
Review
Are NO GCS Constrnct
I Requirement Problem Necessary
Covered? Report Test Caseq
YES
'IM:
Codn Execute Test
Casrs
DTM:
Review
Reaults
File
GeS Implement
Problem Code
Report Changea

Conduct Test
Completion
' eview
-~
- SQA
Report

Figure 8: Black-Box Sub-Frame Testing Procedure
—65—

NTIONABLY BLANK
PRECEDING PAGE BLANK MOT FILMED mg__u’___tmi

—66-

5.4.2.2 Black-Box Sub-Frame Testing Description
¢ Purpose

— Check that all functions of the sub-frame execute correctly.

Method

— Black-Box: Boundary-Value Analysis and Error Guessing

Test Creation Stopping Rule

— Enough test cases have been created to achieve one hundred
percent requirements coverage.

Test Execution Stopping Rule

— All test cases execute correctly.

— Additional testing does not cause a schedule impact.

e Roles

— Programmer: Fixes any problems found after a complete test
run.

— Tester: Designs and executes test cases.

— User/Analyst: Assists tester in designing test cases by answering
questions about the GCS Development Specification and simula-
tor. Makes any necessary modifications to the GCS Development
Specification.

~ SQA Representative: Approves any changes which need to be
made to the programmer’s design or code or the test cases and
conducts the Test Readiness and Completion Reviews.

¢ Input

1. GCS Development Specification including Modifications

2. GCS Design - Programmer’s GCS Design Description and teamwork
Design Diagrams

—67-

E _INTENT
PRECEDING PAGE BLANK NOT FILMED ek _.(g_é._u ENTIONAMY BLANK

3. GCS Module Code under Configuration Control
4. Black-Box Sub-Frame Test Cases™

5. Programmer Instruction #3 - Coding Standards for GCS Ap-
plications (See GCS Programmer’s Manual)

¢ Output

1. Completed GCS Problem Report Forms (See Appendix B page 101.)
2. GCS Sub-Frame Code under Configuration Control

3. Black-Box Sub-Frame Test Cases and Results under Configura-
tion Control in DTM

o Test Readiness Review checks that

— All Requirements are covered by one or more test cases.

— The test cases are fully documented including all inputs and
expected results.

¢ Test Completion Review checks that

— The test results are documented.
— All discrepancies between actual and expected test results are
documented in a problem report.

— All problems are corrected and are appropriately marked in the
code as specified in Programmer Instructions #3 - Coding Stan-
dards for GCS Applications. (See GCS Programmer’s M anual.)

— All test case errors are corrected and documented in a problem
report.

— All problem report forms are completed and approved by SQA.
e General Procedures, repeated for each sub-frame

1. The Tgst Readiness Review?? is held.

3 The test cases are considered input because they were designed before this phase

began.
36 Actually one Test Readiness Review will be held for all sub-frame testing. All black-

box sub-frame test cases will be reviewed as well as all white-box sub-frame test cases.

-68—

2. The tester executes all test cases in DTM using the test case
driver which interacts with GCS_SIM and the coverage infor-
mation tool. The test case results files are compared to the
existing benchmark files for that test case.

3. A problem report is filled out for each test case whose actual
results did not agree with the expected results.

4. The programmer fixes all problems which were discovered and
completes the accompanying GCS Problem Report Form. If a
problem is traced back to the design, an additional GCS Problem
Report Form must be filled out for the design.

5. Changes which are not related to observed failures cannot be
made during sub-frame testing.

6. After all fixes are made, the programmer submits the new copy
of code for configuration control. The SQA representative must
approve the fixes before the code is actually configured.

7. At the discretion of the SQA representative, significantly modi-
fied code should go through another Code Review as described
in Section 5.2. If more than 20 lines of code have been added or
modified, due to a single change, the code must be re-reviewed.

8. When the tester gets the new copy of code, all test cases are
re-executed in DTM. If any actual results do not agree with the
expected results, the cycle of reporting and fixing problems is
repeated. Problems which were previously identified and not
fixed do not need a new problem report form, but additional
information about the test case run will be added to the existing
problem report form.

9. If more than six serious or critical problems are discovered, the
tester may optionally design additional cases. The same proce-
dure as described above will be followed for executing the addi-
tional test cases, reporting any problems, and re-executing test
cases after problems are fixed.

10. The Test Completion Review?® is held.

26 Actually only one Test Completion Review is held for all sub-frame testing. Both
black-box and white-box testing results will be reviewed

_‘,\“m‘

—69-

¢ Tools

— GCS Requirements Traceability Matrix

~ GCS Problem Report Form

—~ DEC Code Management System (CMS)

— Coverage Information Tool (See Section 4.7.)
— DEC/Test Manager (DTM)

- GCS.SIM

— Sub-Frame Test Driver

-70-

5.4.3 Regression Testing

Regression testing is performed on the one version of code for each sub-
frame which results from the Test Completion Review after sub-frame test-
ing as shown in Figure 6. All white-box?” and black-box sub-frame test
cases will be used. The regression testing is not performed in a formal
manner like the other testing, but it is necessary to ensure that no errors
have crept into the system. The SQA report for sub-frame testing will in-
clude an error log. (See SQA Plan for GCS.) The following procedures will
be followed during regression testing.

1. The tester will use DTM to execute all of the white-box and black-box
sub-frame test cases on the new versions of sub-frame code.

2. If the actual results of the test case do not agree with the expected
results, the programmer and SQA representative are called in to fix
the code.

3. Although a problem report form does not have to be filled out, the fix
to the code should still be documented as described in Programmer
Instruction #3 - Coding Standards for GCS Applications. (See GCS
Programmer’s Manual.) The problem will also be noted by the SQA
representative in his sub-frame testing report.

4. When a fix is made, all test cases for that sub-frame must be re-run.

5. When all test cases for all three sub-frames have executed correctly,
the SQA representative will report that sub-frame testing is finished.

27100% multiple-condition coverage may not be assured if the structure of the code has
changed as a result of the combination of the two versions.

28Problem report forms do not have to be filled out because the error was caused by
the Test Completion Review team not the individual programmer. These errors will not
show up during the repetitive run testing because the version of the code that regression
testing is performed on will never be put in the repetitive run harness. The problem will
still be documented as described in the SQA Plan for GCS.

-T1-

72~

i
!
!

5.5 Frame Testing
5.5.1 Overview

Frame Testing is equivalent to DO-178A Module Integration Testing. Since
there are only three sub-frames, they can be integrated simultaneously. The
three testers will design the frame test cases based on the requirements as a
team. The input for each test case will be taken from expected intermediate
results of the system test cases.? Every requirement will be covered by at
least one test case. The tests will be executed on each implementation
separately by the appropriate tester. Each implementation must correctly
execute all test cases. The test cases will be incorporated into a later release
of this document to comply with the DO-178A guidelines. Figure 9 shows
the frame testing procedure.

29The systern test cases were designed before the frame test cases.

-73-

PRECEDING PAGE DLANK NOT FILMED peE_] - INTENTIONALLY BLANK

Frame
Test Cases

Conduct Teat
Iteadinesa
Neview

i Are NO GCS Conslrnct
1 Reqquirement Problem Necrssary
Coverred? Report Test Cases
YES
DTM:
Code Fxecute Test
Cases
DTM:
Review
Results
File
T ni(‘! S Tivplement
’:‘l T" Problem Cade
(‘:‘::;:‘;7 Report Changes
"

Conduct Test
Completion
Review

SQA
Report

f

Figure 9: Frame Testing Procedure

=75=-

__ rse_7 4
PRECEDING PAGE BLAK NOT FILMED ~-INTENTIONARY Btang

-76-

5.5.2 Frame Testing Description
e Purpose
— Check that all sub-frames execute together correctly.
¢ Method
— Black-Box: Boundary-Value Analysis and Error Guessing
o Test Creation Stopping Rule

— Enough test cases have been created to achieve one hundred
percent requirements coverage.

Test Execution Stopping Rule

~ All test cases executed correctly.

Roles

— Programmer: Fixes any problems found after a complete test
© - run.

— Tester: Designs and executes test cases.

— User/Analyst: Assists tester in designing test cases by answering
questions about the GCS Development Specification and simula-
tor. Makes any necessary modifications to the GCS Development
Specification. '

— SQA Representative: Approves any changes which need to be
made to the programmer’s design or code or the test cases and
conducts the Test Readiness and Test Completion Reviews.

e Input

1. GCS Development Specification including Modifications

2. GCS Design - includes Programmer’s GCS Design Description
and teamwork Design Diagrams

3. GCS Sub-Frame Code under Configuration Control

17—

PRECEDING PAGE BLANK NOT FILMED pocE_TL INTENTIONANE BLAE

4. Black-Box Frame Test Cases®°

e Output

1. Completed GCS Problem Report Forms (See Appendix B page 101.)
2. GCS Iintegra.'tgc'iWCdde under Configuration Control
3. Black-Box Frame Test Cases and Results under Configuration
Control in DTM

e Test Readiness Review checks that

— All requirements are covered by one or more test cases.

— The test cases are fully documented including all inputs and
expected results.

o Test Completion Review checks that

— The test results are documented.
— All discrepancies between actual and expected test results are

documented in a problem report.

— All problems are corrected and are appropriately marked in the
code as specified in Programmer Instruction #3 - Coding Stan-
dards for GCS Applications. (See GCS Programmer’s Manual.)

— All test case errors are corrected and documented in a problem
report.

— All problem reports forms are completed and approved by SQA.

¢ General Procedures

1. The Test Readiness Review is held.

2. The tester executes all test cases in DTM using the frame-level
test driver which interacts with the simulator and the coverage
information tool. The test case results files are compared to
the existing benchmark files for that test case.

30The test cases are considered input because they were designed before this phase
began. '

—78-

3. A problem report is filled out for each test case whose actual
results did not agree with the expected results.

4. The programmer fixes all problems which were discovered and
completes the accompanying GCS Problem Report Form. If a
problem is traced back to the design, an additional GCS Problem
Report Form must be filled out for the design.

5. After all fixes are made, the programmer must get approval of
the fixes before submitting the new copy of code to be configured.

6. When the tester gets the new copy of code, all test cases are
re-executed in DTM. If any actual results do not agree with the
expected results, the cycle of reporting and fixing problems is
repeated. Problems which were previously identified and not
fixed do not need a new problem report form but additional
information about the test case run will be added to the existing
problem report form.

7. The Test Completion Review is held.

¢ Tools

— GCS Requirements Traceability Matrix

— GCS Problem Report Form

— DEC Code Management System (CMS)

— Coverage Information Tool (See Section 4.7.)
—~ DEC/Test Manager (DTM)

- GCS.SIM

— Frame Test Driver

-79-

80

5.6 System Testing
5.6.1 Overview

System testing will consist of executing entire trajectories in GCS_SIM.
Test case input will consist of run parameters. There will be 100 test
cases which will be divided equally between initial conditions which are
considered stress conditions and random conditions, some of which may be
stress conditions. Some of the stress conditions are likely to correctly cause
the vehicle to crash. The stress test cases will be carefully chosen to exercise
all parts of the software. For the random test cases, initial conditions
will be distributed randomly across the input space. Some intermediate
results will be checked, including where the velocity altitude contour is
crossed. Each test case description will specify which intermediate results
are examined. An emphasis will be placed on checking timing requirements.
The test cases will be designed by the three testers together.*® The tests
will be executed on each implementation separately by the appropriate
tester. The implementation must correctly execute all 50 stress cases, and
50 consecutive random test cases. The stress test cases will be executed
first. If an error is found by a stress test case, the problem is corrected
immediately, and all previous stress test cases are re-executed in DTM. If an
error is found by a random test case, the problem is corrected immediately,
and that test case is re-executed in DTM. The count of test cases (towards
50) is restarted on new random test cases. The new random test cases will
be chosen by the three testers as a team. A final review will be performed
after this phase of testing. The test cases will be incorporated into a later
release of this document to comply with the DO-178A guidelines. Figure 10
shows the system testing procedure.

31The system test cases will be designed first. Then the frame and sub-frame test cases
will be constructed from them.

-81-

PRECEDING PAGE BLANK NOT FiLMED g0
PAGE INTENTIONABLY BLANK

-82-

PRECEDING PAGE BLANK NOT FILMED

Sterne

Tret Caven

T

Randnm

Coonduct
Tret Rrotincas

Rrview

Tent Cawen

Dt

“oes
Protlem

Repoe

Ges
Probtemn
Report

Coastruet
Ne:raanry

Frot {"unra

nIM
Freents

Strom
Teot Come

—t

nrM

Fuoruir

s
Penbleem
Report
——

lmplement
Uode

Chargen

Mandom Teat
Con

DM

HArview

Results
Fele

Figure 10: Systewn Testing Procedure

Crnduet
Temt
Camplrtinn
Review

SQA
Report

"

-83-

Hes
Froblem
fMrpart

Traplrinent
Cade

(hanges

¢) NTENTIONARLR BRARK

pAGE S

ciha, o LgiT

(2%

-84~

"
I

1

5.6.2 System Testing Description
System Testing Description

Purpose

— Check that the code correctly executes trajectories and that a
minimal mean test case to failure criteria is achieved.

Method

— Black-Box: Stress and Random within Input Space

Test Creation Stopping Rule

— Fifty stress test cases have been created.

— At least fifty random test cases have been created.

Test Execution Stopping Rule

— Fifty stress test cases have been executed correctly.

— Fifty consecutive random test cases have been executed correctly.

e Roles

— Programmer: Fixes any problems found during test run.
— Tester: Designs and executes test cases.

— User/Analyst: Assists tester in designing test cases by answering
questions about the GCS Development Specification and simula-
tor. Makes any necessary modifications to the GCS Development
Specification.

— SQA Representative: Approves any changes which need to be
made to the programmer’s design or code or the test cases and
conducts the Test Readiness and Test Completion Reviews.

e Input

1. GCS Development Specification including Modifications

PRECEDING PAGE BLANK NUT FiLMEp

2. GCS Design - includes Programmer’s GCS Design Descriplion
and teamwork Design Diagrams

3. GCS Integrated Code under Configuration Control
4. Black-Box System Test Cases®?: 50 stress and 50 random -

5. Programmer Instructions #3 - Coding Standards for GCS Ap-
plications (See GCS Programmer’s Manual)

¢ Output

1. Completed GCS Problemn Report Forms (See Appendix B page 101.)
2. GCS System Code under Configuration Control

3. System Test Cases and Results under Configuration Control in
DTM

o Test Readiness Review checks that

— There are 50 stress test cases and 50 random test cases.

— The test cases are fully documented including all inputs and
expected results.

o Test Completion Review checks that

— The test results are documented.
— All discrepancies between actual and expected test results are
documented in a problem report.

— All problems are corrected and are appropriately marked in the
code as specified in Programmer Instruction #3 - Coding Stan-
dards for GCS Applications (See GCS Programmer’s Manual.)

— All test case errors are corrected and documented in a problem
report.

—~ All problem reports forms are completed and approved by SQA.

— All additional necessary random test cases are fully documented
including all inputs and expected results.

32The test cases are considered input because they were designed before this phase
began.

-86—

— Fifty random test cases did execute without error.

o General Procedures

1. The Test Readiness Review is held.
. The tester executes each stress test case using DTM in GCS_SIM

with the coverage information tool. The test case results files
are compared to the existing benchmark files for that test case.

. A problem report is filled out for each stress test case whose

actual results did not agree with the expected results.

. The programmer fixes any errors immediately and completes

the accompanying GCS Problem Report Form. If a problem is
traced back to the design, an additional GCS Problem Report
Form must be filled out for the design.

. After the fix is made, the programmer submits the new code

for configuration control. The SQA representative must approve
the change before the code is actually configured.

. At fhe di_srcregi'on of the SQA representative, significantly modi-

fied code should go through another Code Review as described
in Section 5.2. If more than 20 lines of code have been added or
modified, due to a single change, the code must be re-reviewed.

. When the tester gets the new copy of code, the test case which

detected the error is re-executed in DTM. All previously exe-
cuted stress test cases are also re-executed in DTM. If the actual
results still do not agree with the expected results, the cycle of
reporting and fixing the problem is repeated. Problems which
were previously identified and not fixed do not need a new prob-
lem report form, but additional information about the test case
run will be added to the existing problem report form.

. When all 50 stress test cases are correctly executed, the tester

executes each random test case using DTM in GCS_SIM with
the coverage information tool. The test case results files are
compared to the existing benchmark files for that test case.

. A problem report is filled out for each random test case whose

actual results did not agree with the expected results.

-87-

10.

11.

12.

13.

14.

15.

The programmer fixes any errors immediately and completes
the accompanying GCS Problem Report Form. If a problem is
traced back to the design, an additional GCS Problem Report
Form must be filled out for the design.

After the fix is made, the programmer submits the new code
for configuration control. The SQA representative must approve
the change before the code is actually configured.

At the discretion of the SQA representative, significantly modi-
fied code should go through another Code Review as described
in Section 5.2 . If more than 20 lines of code have been added or
modified, due to a single change, the code must be re-reviewed.

When the tester gets the new copy of code, the test case which
detected the error is re-executed in DTM. If the actual results
still do not agree with the expected results, the cycle of report-
ing and fixing the problem is repeated. Problems which were
previously identified and not fixed do not need a new problem
report form, but additional information about the test case run
will be added to the existing problem report form.

New test cases are then executed with the count towards 50
random test cases restarted.

The Test Completion Review is held.

e Tools

— GCS Requirements Traceability Matrix

— GCS Problem Report Form

— DEC Code Management System (CMS)

— Coverage Information Tool (See Section 4.7.)
— DEC/Test Manager (DTM)

- GCSSIM

-88-

6 Summary

The extensive verification plan documentation required by the DO-178A
guidelines helps ensure that the verification procedures are fully specified.
An effort has been made to make the review and testing procedures as
similar to those found in industry as possible, within the constraints of the
experimental environment. A description of the constraints imposed by
the experimental environment are discussed in the GCS Plan for Software
Aspects of Certification. The constraints of financial resources and schedule
resources are present on all projects, whether in industry or research. Test
methodologies were selected with regards to efficiency and thoroughness.
Since any verification procedure is only as good as the competence of those
who administer it, the verification team for GCS was carefully chosen and
consists of people who have experience in testing software for industry,
government, and research. These factors contribute to a realistic software
testing environment and enhance the integrity of the GCS project.

-89-

-90-

A Equivalence Partitioning and Boundary-
‘ Value Analysis Example for GCS

A.1 Introduction

This example will use the sﬁééiﬁédtibn description .for Altimeter Radar
Sensor Processing (ARSP) from the GCS Development Specification version
2.0. The input to ARSP and their corresponding ranges from the Data

Element Descriptions

input data type 7 range
AR_ALTITUDE array (0...4) of real*8 [0,2000]
AR_COUNTER integer*2 [0,21° — 1]
AR_FREQUENCY | real*8 1,107]
AR_STATUS array (0...4) of logical*1 | [healthy or failed]

The inputs AR_.ALTITUDE and AR_STATUS are five element arrays.
The tables which show their equivalence classes and boundary values only
have one entry for the array. When the actual test cases are identified,
values for all elements of the array must be specified.

A.2 Input Equivalence Classes

After the inputs are identified, the equivalence classes for each input are
identified. The equivalence classes for ARSP are shown below.

" PRECEDING PAGE BLANK NOT FILMED
|

- 91-

paGE_ G0 INTENTIOMABLY BLANK

inpr\ﬂlt ' equivalence classes
AR_ALTITUDE 0 < AR_ALTITUDE < 2000
AR ALTITUDE <0

AR ALTITUDE > 2000
AR_COUNTER 0 < AR.COUNTER<2¥ -1
AR COUNTER< O

, AR COUNTER >2'°-1
AR_FREQUENCY |1 < AR FREQUENCY < 10°
AR FREQUENCY <1

, AR FREQUENCY > 10°
AR _STATUS healthy

failed

Notice that for the ranges where the input is expected to be between
two values, there is one class for inside the range, one class for below the
range, and one class for above the range. For the inputs that can be one of
a set of discrete values, there is an equivalence class for each set of values
which is treated differently.

A.3 Boundaries for Input

The boundary-value analysis technique uses the boundary values of the
equivalence classes to pick input. The table below shows the the input and
equivalence classes again. The last column of the table shows the actual
value which would be picked when making a test case.

- 92—

B E il U idAaiESs iz E S
A THRELTETT e oo -

input equivalence class chosen input value

AR_ALTITUDE 0< AR ALTITUDE <2000 |(a)0°

(b) 2000
AR_ALTITUDE <0 (c) -0.000010t
AR_ALTITUDE > 2000 (d) 2000.000010
AR COUNTER |0< ARCOUNTER<2°—1](e)0
(f) 20— 1
AR_COUNTER < 0 (g) -1

AR COUNTER > 2'° -1 (h) 2'°
AR FREQUENCY |1 <K AR FREQUENCY <10°| (i) 1

(j) 10°
AR FREQUENCY < 1 (k) o
7 AR_FREQUENCY > 10° (1) 10° +1
AR_STATUS healthy (m) healthy
failed (n) failed

A.4 Pseudo-Boundary Conditions

A set of boundary conditions known as pseudo-boundary conditions can also
be identified. They require a knowledge of the specification of the system.
Pseudo-boundary conditions are not included in the regular range but repre-
sent a boundary which causes a different output. Setting AR_ FREQUENCY
to 0 would be a pseudo-boundary condition because AR_ FREQUENCY is
a divisor and normally dividing by 0 would cause an error. A high value
for AR_.ALTITUDE when AR FREQUENCY is high may cause the new
AR_ALTITUDE to be calculated incorrectly because AR.COUNTER is
limited to 10 bits. Another pseudo-boundary condition is that AR_.COUNTER
is set to all ones (2! — 1 = -1) when no echo is received. The pseudo-
boundary conditions for ARSP are summarized in the table below.

*All values which do not show decimal places are assumed to be exact.
Values which show decimal places are calculated with an accuracy of 1 significant digit

less than is required in the specification.
*No accuracy was specified for AR_.FREQUENCY because it is a run parameter. Inte-

ger boundary values will be used.

- g3-

input equivalence class chosen input value
AR FREQUENCY | AR_FREQUENCY =0 (0)0
ARFREQUENCY | 0 < AR FREQUENCY < 7.5+ 107

7.5+10" < AR FREQUENCY < 10° | (p)7.5 107
AR_COUNTER AR_COUNTER = -1 (q)-1

A.5 Equivalence Classes for Output

The boundary-value analysis technique also calls for the output space to
be examined. The output for ARSP is listed in the following table.

output data type range
AR_ALTITUDE | array (0...4) of real*8 [0,2000]
AR_STATUS array (0...4) of logical*1 | [healthy, failed]
K_ALT array (0...4) of integer*4 | [0,1]

For the output we want to achieve a value in each equivalence class as
shown in the table below.

output equivalence classes
AR_ALTITUDE | 0 < AR ALTITUDE < 2000
AR ALTITUDE <0
AR_ALTITUDE > 2000
AR_STATUS healthy
failed
K.ALT 0
1

Next we identify the combinations of input required to achieve those
output values. This requires looking at the specification. We have to work
backwards from desired outputs to desired inputs. If values for some of the
input are not specified, that means they are “don’t cares.”

- 94-

I desired output [required input values j
0 < AR ALTITUDE <2000 | (r)0 < AR.COUNTER <1000
AR ALTITUDE <0 (s)AR.FREQUENCY <0
AR_ALTITUDE > 2000 (t)AR.COUNTER > 1000
AR_STATUS = healthy (W 0< AR.COUNTER <2 -1
AR_STATUS = failed (v)JAR.COUNTER = -1
KALT =0 (w)AR.COUNTER = -1

AR_STATUS|n| = failed
K ALT =1 (x)AR.COUNTER = -1
AR_STATUS|O... 4] = healthy
K.ALT =1 (y)J0O< ARCOUNTER <2 -1

A.6 Test Cases

Finally we identify the actual test cases by combining as many equivalence
classes as possible until all of them are used. All equivalence classes from
the input, pseudo-boundary conditions, and all of the required inputs for
the output equivalence classes are used, as shown in the second column.

- 05-

Aq3jresy = ['¢'1°0)
paqre; = (g

OIS S0 I- 0002> (7 "0l >0 xm! g
Apyresy = [7 0] | 1- I-a@> >0 |0002>F ""0]>0 s| o
Apreay =[50 | 01> >0 000> >0 000> (7" 0] >0 19
0] | ,01xgL T-¢ > >010002=[% "0 d| g
Aqyresy = (3'¢'Z'0)] 0002 = [¥"""1]
porre; = (1] | T+ 401 1@ 10000°000% = (0] nYrgp | ¥
| 0=F "1
Agyreoy = [y°" 0] | 1- 1- 10000°0- = [0] Aobo | ¢
Aysresy = [y 1}
pafre; = [0] | 401 | T~ 018 0002 = [¥"""0] L£ulyql g
Aqyresy = [p°0] | 0 0 0=["""0l wrs'e | T
pasn | ased
SALVIS HY | AONANDTYL YUY | HAINAOD ¥V | AANLILIV Y syndur | 189y

- 96—

B GCS Forms
B.1 GCS Requirements Traceability Matrix

- 97~

GCS REQUIREMENTS TRACEABILITY MATRIX

Process

Requiremesnt

Design

Code

Sub-Frame
Test

Frame
Test

System
Test

ARSP

ASP

CP

GSP

TDLRSP

Use correct data elements

Read sensor

Determine altitude

Set altimeter radar status to healthy

Use correct data elements
Read accelerometer
Remove characteristic bias
Correct for misalignment

Determine accelerations and accelerometer status

Use correct data clements
Construct packet

Send packet

Set communicator status to healthy

Use correct data elemeats
Rotate array values

Adjust Gain

Convest G.COUNTER

Set gyroscope status to healthy

Use corvect data elements

Rotate values

Determine radar beam states
Determine beam velocities

Average beam velocities and convert to
body velocities

Set TDLR.STATUS to bealthy

l1of3

- 98-

GCS REQUIREMENTS TRACEABILITY MATRIX

Process

Requirement

Design

Code

Sub-Frame
Test

Frame
Test

System
Test

TDSP

cp

GP

AECLP

Use correct data elements
Determine if touch-down has been sensed

Use correct data elements

Counversion of solid state temperature
Coaversion of thermocouple pair temperature
Select most accurate estimate

Set status to healthy

Use correct data elements
Coastruct packet
Send packet

Set communicator status Lo healthy

Use correct data elements

Set up the GP_ROTATION matrix

Calculate new values of velocity, altitude, and attitude
Determine if engines should be on or off

Determine VELOCITY_ERROR

Determine if contour has been crossed

Determine guidance phase

Use cortect data clements

Determine if -axial engines are switched on
Determine engine temperature

Compute limiting errors

Compute pitch, yaw, and thrust errors
Compute axial engine valve settings

Set axial engine status to healthy

20f3

- 99-

GCS REQUIREMENTS TRACEABILITY MATRIX

Process

Requirement

Design

Code

Sub-Frame
Test

Frame
Test

System
Test

CcP

CRCP

RECLP

GENERAL

Use correct data clements
Construct packet

Send packet

Set communicator status to healthy

Use cortect data elements

Determine CHUTE RELEASED value

Use correct data elements
Determine if engines are on

Determine pulse intestity and direction
Determine roll engine command
Command engines

Set roll engine status to bealthy

Process executed in manner compatible with
table 4.1

Rendezvous routine called first

Rendezvous routine called between all sub-frames
Timing requirements in Table 6.1 are met
Memory space requiremeats in Table 6.2 are met

3of3

- 100-

B.2 GCS Problem Report Form

- 101-

GCS PROBLEM REPORT FORM page 1 of —

PR No.: Planet: Discovery Date & Time:

Activity at Fault/Error Detection Time: Problem Discovered By:

[___I Reading Specification Document D Module Testing

[] Reading Code [[] Sub-frame Testing 8 g::::;?;x
D Design Review D Frame Testing

D Code Review EI System Testing

D Test Readiness/Completion Review D Multiple Version Comparisons

Explanation of Fault/Error Detection: (Cite test case number, input, expected output, and
actual output where appropriate)

Tester Approval:

General Version Number: Effort Hours for Fix: Fix Date & Time:

Description of Problem and Fix: (First state module affected and CMS Generation Number)

- 102-

GCS PROBLEM REPORT FORM

page —__of ____

Error Type

D Computational Error I:] Interface Error D Other
I:] Control Flow Error I:I Operation Error

D Data Error D Inconsistency

Error Severity

[] Critical D Serious [:] Nonessential [[] Not Applicable
Was this error related to a previous change?
[] Yes (PR No.) []No [] Can’t Tell
When did the error enter the system?
D Specification D Design [] Coding and Testing D Other
D Can’t Tell D Not Applicable

[SQA Approval: |

- 103-

page —__of ___

GCS PROBLEM REPORT FORM

Continuation of Section:

B.3 GCS Design Review Checklist

- 105-

planet:

date:

start time:—___ finish time;

GCS DESIGN REVIEW CHECKLIST

A. DESIGN DOCUMENT

1.

Does the format of the Design Document match that described
in Programmer Instruction #6?

Does the top level description in the Design Document conflict
with anything in the specification?

3. Do any subroutine names start with GCS_.?

4. Is the chosen method(s) of integration described?
5. Were teamwork and the Hatley method used as described in

Programmer Instruction #77

B. STRUCTURE

1.

Did the teamwork model pass the balancing check?

2. Are any processes for separate sub-frames grouped together?

Are all the processes which are described in the specification
traceable to the design?

Is the purpose of each module stated clearly?

5. Are the inputs and outputs for each module stated clearly? Do

10.

they have their own flow and use the correct units?

Are the inputs and outputs for the processes described in the
specification traceable to the module inputs and outputs?

Does each module have high cohesion, i.e. strong functional
association?

Do the modules have low coupling between them, i.e. little de-
pendance on each other?

Are any processes performed which were not described in the
specification?

Is any teamwork process specification longer than two pages?

- 106-

yes no

no yes
no yes

yes no

yes no

yes no

no yes

yes no

yes no

yes no

yes no

yes no

yes no

no yes

no yes

C. PROCESSING SEQUENCE

1.

Is the rendezvous routine called before any processing takes
place?

Is the rendezvous routine called between sub-frames?

3. Are the processes performed in a manner compatible with table

4.1 in the specification?

4. Are all local variables, which depend on data stores, recalculated
after the rendezvous routine is called?

5. Are all guidance phases handled as described in table 5.9 of the
specification?
: 6. Are the position and velocity of the vehicle relative to the alti-
tude contour checked every frame?
l D. DETAIL
; ‘ 1. Can each teamwork process specification be easily coded into a
: module?
' 2. Do the teamwork process specifications use pseudo code which

resembles the level of detail for program code?

3. Does the pseudo code need or use comments to explain it?

7.

Are all of the specified local variables necessary and are they
only used locally?

Does it appear that the designer intends for any VMS Run-Time
Library Routines to be used?

Does it appear that the designer intends for any VMS System
Services to be used?

Are all data stores used as specified in the Data Dictionary?

E. OTHER

1.

2.

Are all algorithms understandable? If a reviewer cannot under-
stand a part of the design without repeated explanation, then
the design should be redone to make it more clear.

Are all assumptions documented?

- 107~

yes
yes

yes

yes

yes

yes

yes

no

no

no

no

no

no yes

no yes

yes

no

no yes

no yes

yes

yes

yes

no

no

no

3. Is the decision logic clear and does it handle all conditions prop-
erly? S S

4. If error handlers are called for, are they used wisely?

approval:

“108- &

yes no

yes no

i s 4 v e iy

o s O,

B.4 GCS Code Review Checklist

- 109~

planet:

modules reviewed:

date:

start time:_____ finijshtime: ____

GCS CODE REVIEW CHECKLIST

A. FUNCTIONALITY

1.

2.

3.

Do the code modules map to a well-defined section in the design?

Do the code modules account for all requirements specified in
the above well-defined section in the design?

Does each unit have a single purpose?

B. FORMAT

1.

Has the programmer used available template files for the modules
and headers?

Are comments explanatory and correctly done? le., block code
comments, section code comments, and declarations section com-

ments.

Are all assumptions documented in comments?
Is the formatting of the code correct?

(a) Are labels in column 1?

(b) Are continuation markers in column 6?

(c) Does code begin in column 8 or 16?

(d) Are all indentations 4 spaces?

Are there more than one hundred lines (or two pages) of code in
a module? If yes, what is the justification for this?

Is there only one argument per line in an OPEN statement?

7. Are there blanks around equal ("=") signs in OPEN statements?

-110-

yes

yes

yes

yes

yes
yes
yes
yes
yes
yes
yes

no

no

neo

no

no

no

no

no
no
no

no

no yes

yes

yes

no

no

10.
11.
12.
13.

Is all code in lower case, with references to program constants
and external modules in upper case?

. Has the programmer used:

(a) one file per module?
(b) bundled modules for only one application? If so, are module
headers and page breaks used appropriately?

Does the file name match the module name?
Is all code written only in FORTRAN?
Are any VMS Run Time Libraries or System services?

Are any data hidden? (see restrictions on P. 110 of the specifi-
cations)

C. DATA USAGE

a. Declarations

1. Is all storage declared?

2. Is IMPLICIT NONE the only use of the IMPLICIT state-
ment?

3. Do declarations show both type and size? (i.e., integer*4)

4. Do declarations match the specifications?

5. Are arrays explicitly dimensioned?

b. Common/Equivalence

1. Are there local variables which are misspellings of a COM-
MON element?

2. Are the elements in the COMMON in the right sequence?

3. Are COMMON blocks used in multiple units defined by a
common INCLUDE file?

4. Do EQUIVALENCE statements force any unintended shared
data storage?

5. Is each EQUIVALENCE commented?

c. Variables

1. Are the variables initialized in DATA statements, BLOCK
DATA, or previously defined by assignments or COMMON
usage?

- 111~

yes no

yes no

yes no
yes no
yes no

no yes

no yes

yes no
no yes
yes no

yes no
yes no

no yes
yes no

yes no

no yes
yes no

yes no

If variables are initialized in DATA statements, should they
instead have been initialized by an assignment statement?

Are variables used for one purpose?
Are variables which are GCS globals initialized in the pro-
gram?

D. ERROR HANDLING Error handling is not required, but if im-
plemented, it needs to follow certain standards.

1. If there is no error handling, are IOSTAT and ERR used?

2. Are errors only handled in a preventative manner? (Error han-
dlers should not intercept system fatal errors.)

E. LINKAGE

1. Do all arguments in a subroutine call or function reference agree
in number, order, dimension, data type and passed limits with
the dummy arguments in the subroutine or function?

2. Does the function return data of the correct type?

3. Does the calling module deal with any modifications to global
data areas, errors on open 1/0 units, or completion of I/0 to
certain units which occur in the subprogram?

4. Does a subroutine mddify any input parameter? If so, is this
fact clearly stated?

5. Does a FUNCTION routine have only one output data item and
no side effects?

F. LOGIC

a. Loops

1.

Do the initial, terminal, and increment values appear cor-
rect?

Is the correct condition tested?

In REAL-valued conditions, does testing include testing for
a narrow range around the desired value and does it use
.GE. and .LE. rather than .GT. and .LT., especially if the

test is used for iteration control?

-112-

no yes
yes no

no yes

no yes

yes no

yes no

yes no

yes no

yes no

yes no

yes no
yes no

yes no

4. For REAL-valued index DO loops, is the loop variable sub-
- ject to floating point errors which can impact other code?

no yes

5. Are there changes to the index value within a DO loop? no yes

6. Is the index variable only used within the DO loop? yes no

7. Are there any loops used for delay or timing purposes? no yes

8. Is the use of early returns absolutely necessary? yes no
9. Are there branches into the body of a loop or out of the
body of the loop (other than to the close of the loop or to

the statement following the loop)? no yes

10. Do targets exist for all branches? yes no
11. For compound conditions in DO WHILE loops, are paren-

theses used correctly? yes no

12. Is loop nesting in the correct order? yes no

b. Branches

1. Does the use of unconditional GOTOs follow the standard

on p.117 yes no

2. Is the correct condition tested? yes no
3. In REAL-valued IF statements, does testing for single-ended
tests include testing for a narrow range around the desired
value and does it use .GE. and .LE. rather than .GT. and

.LT., especially if the test is used for iteration control? yes no

4. Are the correct variables used in the test? yes no
5. For compound IF statements, are the parentheses used to

control ordering and precedence coded correctly? yes no

6. Is the nesting of IF-THEN-ELSE constructs correct? yes no

7. Can the code exercise all branches of IF statements? yes no

8. Is there a default branch for all IF statements? yes no

9. Do the target branches exist? yes no

c. Lexical Rules

1. Do integer comparisons account for truncation? yes no
2. Are parentheses used correctly for precedence and ordering?

yes no

- 113~

3. Are potential ﬂoatingr-p:)intr. broblems considered in the choice

of numerical operations? yes no
4. Are array subscript references within the bounds of the ar-
ray? : yes no

approval:

- 114~

B.5 GCS Module Test Log

- 115-

5358D 3159] JO # [ej03

IS2J0N

1mdino ampowr

empow

ourely-qus

— 30— a%ed

:jaurerd

D01 LSIL dTINAON SOD

:3ndur snpows

- 116~

pojndaxs | Loeanooe | Aoeindde # osed | #
1$93 93%p | Tenjde pajoadxa £JNsa1 renjoe sjnsax pajyoedxe indur smpow 1591 | ¥4d
:ampouwt
:Pwren-qns
1joured
T30 93ud D07 LSAL ITNAOW SOD

- 117-

- 118-

C McCabe’s Structured Test Technique

C.1 Introduction

McCabe’s testing technique will be used in white-box sub-frame testing
for GCS. The method satisfies the multiple-decision coverage criteria for
white-box testing. The technique is applied at the code level. It can be
partially automated and provides consistent and objective results.

The technique relies on McCabe's complexity metric, which is based
on the cyclomatic number, V(G), from graph theory. After graphing the
code in an appropriate form (control flow graph), the complexity metric
is determined from the graph. The metric essentially counts the number
of decisions in the graph, giving the minimum number of independent test
paths necessary for 100% multiple-decision coverage for the code. McCabe
then uses a baseline method to find the test paths.

Each test path consists of a set of decisions from the graph. The baseline
method involves choosing a baseline path through the graph for the first
test path. Successive test paths are found by deviating from the baseline
path in a prescribed fashion. The size of the set of test paths will be
equivalent to the complexity metric, and the set will in fact be a basis set
of test paths. That is, any path through the graph can be found from a
linear combination of the test paths in the basis set. Finally, input sets
need to be created to satisfy each test path.

C.2 Procedures

These procedures are a basic listing of the steps involved in using McCabe's
method. For a more detailed explanation, see [14].

1. On a printout of the code, mark the branches (if-then, case, and loop
statements) in the code.

2. Create a control flow graph from the code.

(2) Nodes in the graph consist of blocks of sequential logic. Any
branches in the code (if-then or loop statements) will be noted
either as separate nodes or at the end of a block of sequential

logic.

- 119~

AAGE_L |9 INTENTIONAM® BRANK
PRECEDING PAGE BLANK NOT FILMED

3.

10.

(b) Arcs are transfers of control.

Determine cyclomatic complexity. This measure will be the number
of test paths necessary to achieve 100% multiple-decision coverage.
Use any of the following three formulas.

(a) Number of decisions in flow graph + 1

(b) Edges - nodes + 2

(c) Number of enclosed regions in flow graph (where an enclosed
region is a visual region on a graph which is enclosed by edges)

Find the baseline path. Any path through the graph will work, but it
is recommended that the baseline path be the longest path through
the graph without loops.

Write out the baseline path by listing the nodes.

. Find the next test path.

(a) Follow the baseline path until the first branch is reached.
(b) Choose another branch than the one the baseline path took.

(¢) As soon as possible, return to the baseline path.

Find the remaining test paths. The total number of test paths should
equal the cyclomatic complexity (see above).

(a) Follow the baseline path until the next branch is reached.
(b) Choose another branch than the ones previously chosen.

(c) As soon as possible, return to the baseline path.

Each test path is a set of decisions. At this point the tester can write
out the set of decisions for each test path.

For each test path, determine input sets such that the decisions given
in the test path are invoked.

For each input set, determine the expected results.

- 120~

i

Code

Create Contyol
Flow Graph (G)

Determine Cyclomatic
Complexity V(G)

Find Bascline Path

Find Next Path

\NO

Number of Paths
= V(G)?

YES

Determine Test Cases

Sub-Frame

Test Cases

Figure 11: White-Box Sub-Frame Test Case Creation

- 121-

References

[1] RTCA Special Committee 152. Software Considerations in Airborne
Systems and Equipment Certification. Technical Report RTCA/DO-
178A, Radio Technical Commission for Aeronautics, March 1985.

[2] George B. Finelli. Results of software error-data experiments. In
AIAA/AHS/ASEE Aircraft Design, Systems and Operations Confer-
ence, Atlanta, GA, September 1988.

[3] Software Engincering Technical Committee. IEEE Standard Glossary
of Software Engineering Terminology. Technical Report IEEE Std 729-
1983, The Institute of Electrical and Electronic Engineers, New York,
New York, February 1983.

[4] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons,
New York, New York, 1979.

[5] Michael S. Deutsch. Software Verfication and Validation. Prentice-
Hall Inc., Englewood Cliffs, NJ, 1982,

(6] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold
Company, New York, New York, 1983.

[7] Guide to VAX DEC/Test Manager. Digital Equipment Corporation,
Maynard, Massachusetts, October 1986.

[8] William Hetzel. The Complete Guide to Software Testing. QED In-
formation Sciences, Inc., Wellesley, Massachusetts, 1984.

[9] Derek J. Hatley and Imtiaz A. Pirbhai. Strategies for Real-Time Sys-
tem Specification. Dorset House Publishing Company, New York, New
York, 1987.

[10] Thomas J. McCabe. Structured Testing: A Software Testing Method-
ology Using the Cyclomatic Complezity Metric. NBS Special Publica-
tion 500-99, National Bureau of Standards, December 1982.

-122-

oA Report Documentation Page

1. Report No. 2. Government Accession No.

NASA TM-101668

3. Recipient's Catalog No

4, Title and Subtitle

Software Verification Plan for GCS

5. Report Date

January 1990

6. Performing Organization Code

7. Authoris)

Leslie A. Dent
Anita M. Shagnea
Kelly J. Hayhurst

8. Performing Organization Report No.

9. Performing Organization Name and Address

Langley Research Center
Hampton, VA 23665-5225

10. Work Unit No.

505-66-21-03

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546-0001

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Anita M. Shagnea, Research Triangle Institute, Research
Kelly J. Hayhurst, Langley Research Center, Hampton, VA

Leslie A. Dent, Research Triangle Institute, Research Triangle Park, NC

Triangle Park, NC

16. Abstract

the fundamental characteristics of the software failure

on the testing of each implementation of software. The

of the tools used throughout the verification process.

This verification plan is written as part of an experiment designed to study

process. The experiment

will be conducted using several implementations of software that have been
produced according to industry-standard guidelines, namely the Radio Technical
Commission for Aeronautics RTCA/DO-178A guidelines "Software Considerations in
Airborne Systems and Equipment Certification," for the development of flight
software. This plan fulfills the DO-178A requirements for providing instructions

plan details the

verification activities to be performed at each phase in the development process,
contains a step by step description of the testing procedures, and discusses all

17. Key Words {Suggested by Author(s))
Software Reliability
Verification Plan
GCS—--Guidance and Control Software
Black-box Testing
White-box Testing

18. Distribution Statement

Unclassified-Unlimited

Subject Category 38

19. Security Classif. {of this reporf) ' 20. Security Classif. {of this page)

Unclassified Unclassified

21. No. of pages 22. Price
133 AO07

NASA FORM 1626 OCT 86

